UNIVERSITY OF

CENTRAL FLORIDA

Authoring & Delivering MR Experiences

Matthew O'Connor^{1,3} and Charles E. Hughes^{1,2,3} ¹School of Computer Science ²School of Film and Digital Media ³Media Convergence Laboratory, IST University of Central Florida SIMCHI'05 January, 2005

January 2005

Topics

Context
Experiences
Story Engine
Other Engines
Science

What and Why?

January 2005

Cross Reality

AUGMENTED REALITY

COMBAT REALITY

VIRTUAL REALITY

AUGMENTED VIRTUALITY

SIMCHI 2005

Cross Reality Capabilities

Virtual Display

Vienna University of

Technology

Video See-Thru Display

Optical See-Thru Display Desktop and Embedded Projection Display

SIMCHI 2005

MR Experiences

Examples of what we have delivered

MR MOUT

Training with high stress

 Can use for human factors studies on new situational awareness paradigms
 Don't field it until you test it.

Vehicular

Sniper

Ent Line Novement

HUD

FFW

Hostiles

SFX

MOUT

SIMCHI 2005

CGF

MR MOUT STC 360° SET

MR MINI-MOUT

SIMCHI 2005

MOUT 2 Video

MR MOUT 2.0 THIS IS MIXED REALITY

SIMCHI 2005

Trailers and Previsualization

Time Portal is an interactive movie trailer; can provide hype for movies

Previsualization used in current movie creation, but MR adds new dimensions

Details in next talk

SIMCHI 2005

MR Virtualization

Virtual models in real settings
Extension to scientific visualization
Real props
Collaborators
Multiple POV of common model(s)
Details in next talk

MR Story Engine

Creating and delivering the experiences

Agents

Every object that has state, behaviors or interactions has an associated software agent in the Story Engine Agents can delegate behaviors to others Can explicitly include/exclude inherited states or behaviors Agents have peers in the Graphics, Audio and SFX Engines, if appropriate

Scripting

XML-based scripting

 Behaviors with guarded cases actions (invoked by communiques), triggers (time based), guarded reflexes (every cycle) results change states for next cycle

Plug-ins

- AI Behaviors
- Multiple physics engines
- Pluggable-interfaces

Advanced procedural scripting

SIMCHI 2005

Behaviors

Motivation-based AI Agents will respond to your interactions Agents will respond to each other Example: Path-based travel with raytracing for field-of-vision Path planning provides control stream Ray tracing alters behaviors to react to environment

If you attack me, I'll attack you

Customization

Customizable agents

- Use delegation to get basic behaviors
- Customize by overriding behaviors or setting parameters

Auxiliary Physics Engines

- Pathfinding APE
- Raytracing APE

Remote Device Interfaces

- Connect any number of mice, keyboards, control sticks, or other mechanisms through this device-abstraction and network-based interface
- Customizable device interfaces
 - Reload feature for user's gun
 - Grenade launcher
 - grenades that bounce (physics engine)

Features

Reusable components

Build new scenarios from agents & resources of existing ones

VR and MR domains

Same scenario can operate in either manner

Multiple viewpoints

- Others can watch
- Can have cameras to give different POVs.
 - fixed or tracked

Audio engine

- 2-way radio (hardware and integration with sound system)
- Multi-tier audio server
- Audio delivered based on speaker constraints
- SFX Engine

More

Calibrate set from within experience
Support divers, swimmers, waders
Users, trainers, observers
Log and playback
After action review
Rehabilitation

Architecture

- Modularized all services can be distributed
- Runs on multiple platforms (tested on Linux and Win/XP)
- Communication Protocol
 - Control Stream (position and orientation)
 - Can come from SensorServer
 - Can come from real-time accurate physics engine
 - Can come from another agent
 - Command Stream (high-level actions)
 - Data Encapsulation Format (DEF)
 - Serialization and encapsulation of data

What Physics Engines Control

Element	Parts	Units
.location	.x .y .z	mm
.orientation	.yaw .pitch .roll	0
.linearVelocity	.x .y .z	mm/s
.linearAcceleration	.x .y .z	mm/s ²
.angularVelocity	.yaw .pitch .roll	°/s
.angularAcceleration	.yaw .pitch .roll	°/s ²

Flexibility

 Bidding based allocation of rendering resources
 Level-of-Detail management uses bids based on distance from user
 In general we can support rendering schemes as diverse as ones based on story

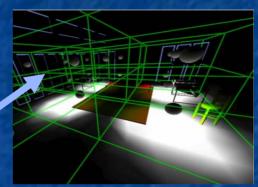
MOUT 3.0

SIMCHI 2005

MOUT3 Video

MR MOUT 3.0 AGENT BEHAVIORS

SIMCHI 2005


Other Engines

The delivery parts

The Software Engines

Story
Graphics
Audio

All are Platform Neutral

SFX

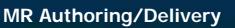
SIMCHI 2005

Graphics Engine

OSG
Cal3D
Agent peers
Occlusion
Impostors
Matte support

Audio Engine

 Ambient, point, dynamic (3d moving)
 Constrained based on speaker placement
 Agent peers

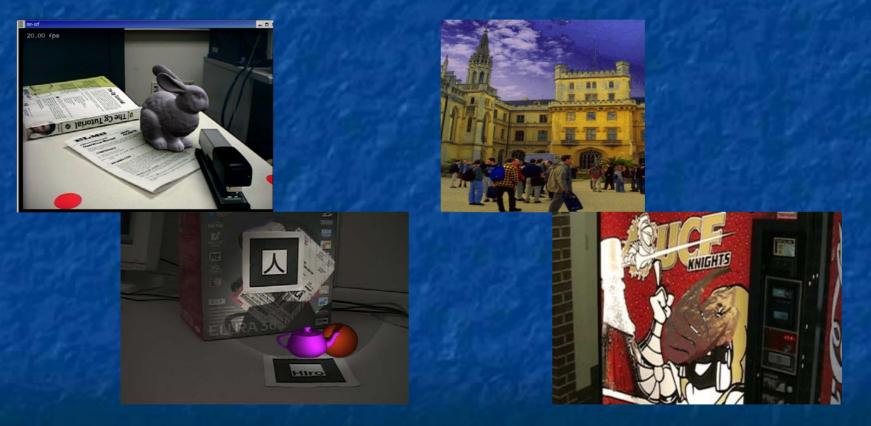


Special Effects

- Colorkinetics SmartJack3 (USB to DMX)
- Colorkinetics JuiceBox2 / iColor MR Lights
- Gilderfluke MP3-50/40
- 4 Channel Dimmer Packs
- Pneumatic / Smoke System
- Sound Transducers ("Bass Shakers")

SIMCHI 2005

Integration of MR Engines


MIXED REALITY ENGINE

Future

Story-based rendering Develop visual authoring interface **MR Backlot** -Integrate shadow/illumination work Run stories on PDAs Perform human factors experiments Create multi-player scenarios Go outdoors

Contributing Science Melting the Boundaries in realtime

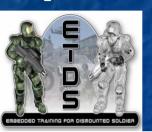
Blending the Real and the Virtual

- Lighting (SNP)
- Virtual light on real/virtual objects
- Real light on virtual objects
- Shadows
- Cast by virtual objects on real/virtual objects
- Cast by real objects
- Fire
- Creating light and shadows on real/virtual
- Use color-transfer for ambient lighting (ER)

Fire/Shadows

FLASHLIGHT LIGHTING ACTIVE (LMB FOR FIXED). Visible surfaces: Ground BoxFront

Pegasus in CSB



Sea Creatures

We wish to thank our partners

Iseinology to the Warlighter Quicker

Canon

Office of Naval Research

ORLANDO SCIENCE CENTER

UNIVERSITY OF

CENTRAL FLORIDA

Primary UCF Faculty Collaborators Chris Stapleton – chris@mcl.ucf.edu Sumanta Pattanaik – sumant@cs.ucf.edu Erik Reinhard – reinhard@cs.ucf.edu Mike Moshell – j.m.moshell@cs.ucf.edu

Our Laboratories

IST Media Convergence Laboratory – http://mcl.ucf.edu CS Graphics Laboratory – http://graphics.cs.ucf.edu Joint use Simulation Training Center

SIMCHI 2005

UNIVERSITY OF

CENTRAL FLORIDA

Charles E. Hughes School of Computer Science http://www.cs.ucf.edu & Media Convergence Lab http://mcl.ucf.edu & Graphics Group http://graphics.cs.ucf.edu & School of Film and Digital Media http://www.sfdm.ucf.edu E-Mail: ceh@cs.ucf.edu Home Page: http://www.cs.ucf.edu/~ceh/

SIMCHI 2005