Modeling virtual urban environments

Julien Perret

The goals

- Modeling complex environments
- Using real data
 - Height maps
 - Water maps
- Modeling the evolution of the environment
- Simulating emergent phenomena
- Visualizing the generated environments

Previous work

- Natural environments
- Street networks
- Urban growth and suburban sprawl
- Buildings

Natural environments L-systems, a quick overview • Parallel string rewriting systems – Parallel application of rules – An application represents a lapse of time • Rules of type - predecessor: condition \rightarrow successor

L-systems parallel application

Modules: A B Axiom ω: B productions : $A \rightarrow AB$ $B \rightarrow A$ produces: **n=0** $\mathbf{B} \rightarrow \mathbf{A}$ **n=1** $\mathbf{A} \rightarrow \mathbf{AB}$ $n=2 AB \rightarrow ABA$ $\mathbf{n=3} \ \mathbf{ABA} \rightarrow \mathbf{ABAAB}$ n=4 ABAAB \rightarrow ABAABABA

Ĩ a ab JI aba abaab _//J └∕ abaababa

b

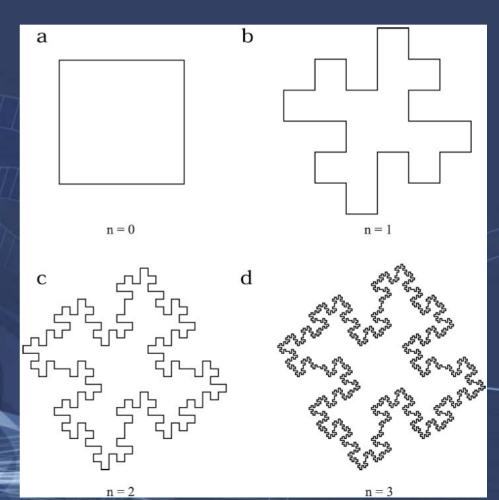
L-systems Turtle Interpretation

State of the turtle: (x, y, α)

(x, y): *Cartesian position* of the turtle

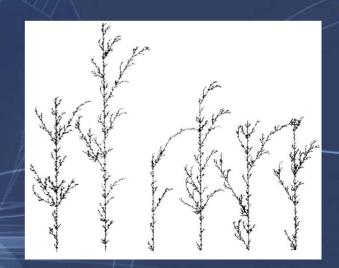
 α : *heading* of the turtle, i.e. the direction in which it is heading Also

d: step size


 δ : angle increment

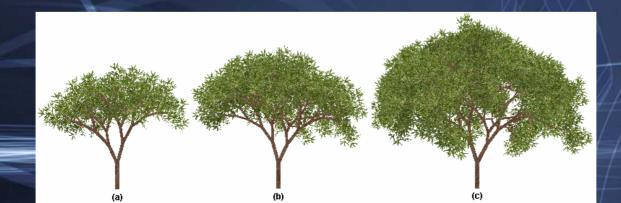
Commands:

- F move forward a step of length d drawing a line segment.
- f the same without drawing.
- + turn left by angle δ .
- turn right.


L-systems Koch island

- δ=90°
- d is decreased 4 times between each derivation step

L-systems Branching structures


- $\begin{array}{ccc} \omega & \mathbf{F} & & & & & \\ p_1 & \mathbf{F} : .33 \rightarrow \mathbf{F} [+\mathbf{F}] \mathbf{F} [-\mathbf{F}] \mathbf{F} & & & & & \\ p_2 & \mathbf{F} : .33 \rightarrow \mathbf{F} [+\mathbf{F}] \mathbf{F} & & & & \\ p_3 & \mathbf{F} : .34 \rightarrow \mathbf{F} [-\mathbf{F}] \mathbf{F} & & p_1 & p_2 & p_3 \end{array}$
- [and] create a branching structure
- **Probabilities of application are** Added at the end of the rules
- A single L-system creates a variety of plants

L-systems generation of trees

 $\substack{\omega \ FA(1) \\ p_1 \ A(k) : \min\{1, (2k+1)/k^2\} \\ \to /(\varphi) \left[+(\alpha) \ FA(k+1) \right] -(\beta) \ FA(k+1) \\ p_2 \ A(k) : \max\{0, 1 - (2k+1)/k^2\} \\ \to /(\varphi) -(\beta) \ FA(k+1)$

Modules +, – denotes rotation around the z-axis (up) Module / denotes rotation around the y-axis The angles for the rotations are specified for a given class of trees $(\alpha = 32^{\circ}, \beta = 20^{\circ}, \varphi = 90^{\circ}).$

L-systems applications

- Biological models
 Cells
 Plants
 Trees
- More recently

 Street networks
 buildings

Street network using L-systems

- Data
 - Maps
 - Water
 - Elevation
 - Population
 - Street pattern control
- A set of rules
- Some constraints

Street network using L-systems the rules

ω: R(0, initialRuleAttr) ?I(initRoadAttr, UNASSIGNED) p1: R(del, ruleAttr) : del<0 → ε

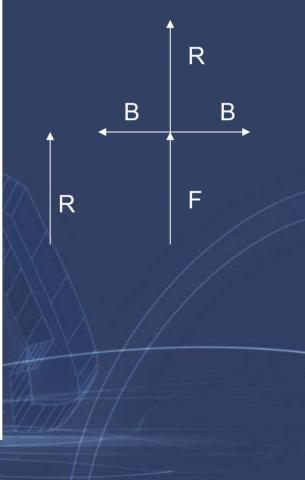
- p2: R(del, ruleAttr) > ?I(roadAttr,state) : state==SUCCEED
 {globalGoals(ruleAttr,roadAttr) creates the parameters
 for: pDel[0-2], pRuleAttr[0-2], pRoadAttr[0-2]}
 - $\rightarrow +(\text{roadAttr.angle})F(\text{roadAttr.length}) \\ B(pDel[1],pRuleAttr[1],pRoadAttr[1]), \\ B(pDel[2],pRuleAttr[2],pRoadAttr[2]), \\ B(pDel[0],pRuleAttr[0]) 21(pRoadAttr[0], UNASSIC) \\ B(pDel[0],pRuleAttr[0], UNASSIC) \\ B(pDel[0], UNASSIC$

```
R(pDel[0], pRuleAttr[0])?I(pRoadAttr[0], UNASSIGNED)
p3: R(del, ruleAttr) > ?I(roadAttr, state) : state==FAILED \rightarrow \varepsilon
```

```
p4: B(del, ruleAttr, roadAttr) : del>0 \rightarrow B(del-1, ruleAttr, roadAttr)
p5: B(del, ruleAttr, roadAttr) : del==0
```

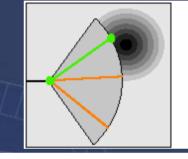
```
\rightarrow [R(del, ruleAttr)?I(roadAttr, UNASSIGNED)]
```

```
p6: B(del,ruleAttr,roadAttr) : del<0 \rightarrow \epsilon
```

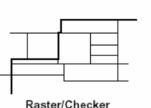

```
p7: R(del,ruleAttr) < ?I(roadAttr,state) : del<0 \rightarrow \epsilon
```

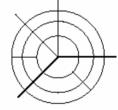
p8: ?I(roadAttr,state) : state==UNASSIGNED

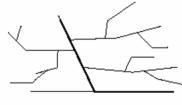
{localConstraints(roadAttr) adjusts the parameters for: state, roadAttr}


 \rightarrow ?I(roadAttr, state)

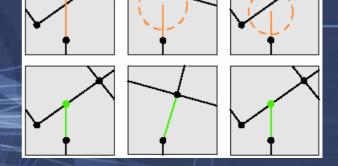

p9: ?I(roadAttr,state) : state!=UNASSIGNED $\rightarrow \epsilon$


Street network using L-systems


Global constraints
– Population density
• For highways



Road patternsFor streets



Radial/Concentric

Branching

• Local constraints


Street network using L-systems Limitations

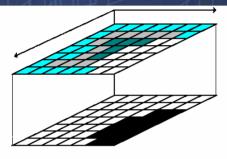
Invalid intermediate states

No intermediate model

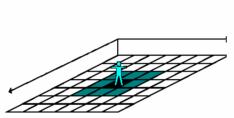
We need the actual maps

Why not using it?

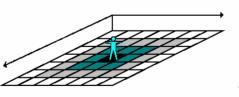
Street network using L-systems Conclusion

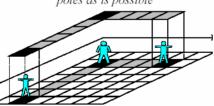

- To model the evolution of the L-system properly, we need a model of the evolution of the population density
- Otherwise, we can use real data

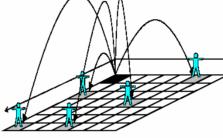
To model the evolution of a street network, we need at least two of its states and the corresponding population maps

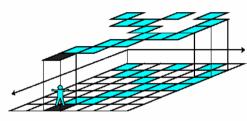

Urban growth and suburban sprawl

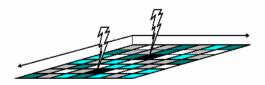
- Simulating the evolution of the population
- Using
 - Cellular automata
 - Multi-agent systems


Urban growth and suburban sprawl: the rules

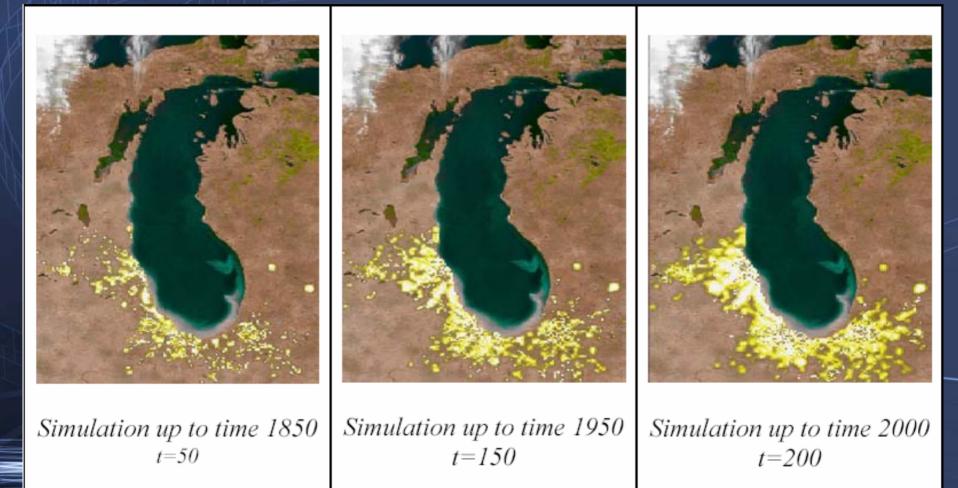

Rule 1: Developable sites: cells develop which meet pre-existing constraints on land development


Rule 2: Compact growth: agents locate on cells as close to the basic seeds or growth poles as is possible


Rule 3: 'Hub'-influenced growth: agents develop cells to maximize agglomeration economies


Rule 4: Road-influenced growth: linear routes attract agents, thus development

Rule 5: Scattered growth: agents develop cells by leapfrogging the growing cluster to optimize access


Rule 6: Bifurcated growth: agents develop new cells which connect and compete with the existing cells

Rule 7: Decline: cells lose their attraction to growth as they age or lose their comparative advantage

Urban growth and suburban sprawl: the results

Urban growth and suburban sprawl: limitations

- Works on grids (cellular automata)
- Do not build the street network
- We can add rules to make it converge to real data

Goals

- Development of an environment in continuous time
- Unify the modeling of roads, buildings and plants
- Model interactions between objects

Assumptions

- Roads and buildings are built by agents
- The number of agents is a ratio of the population
 - there is at least an agents at the beginning
 - non-builders are useless
- A chicken and egg problem:
 - What comes first?
 - Better transportation or population growth?
 - We assume it is the transportation

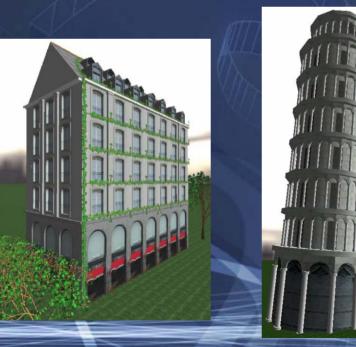
the street network

- Rules of street network evolution
 - Using the terrain
 - Using the population
 - Centrifugal
 - Centripetal
 - Space-filling/closure
- The map of the population
 - updated by the construction of buildings
 - Determines the density of the street network

the buildings

- Buildings are spread along the roads
- They trigger the evolution of the population
- They can be replaced if the density of population needs it
- Buildings construction is simulated using Lsystems

the agents


- Availability
 - The number of available agents evolves with the population
- Scheduling
 - We have to choose the roads and buildings that will be built first
 - This is done by attributing them an importance
 - The importance of a road construction is determined by
 - The importance of a buildings is defined by
- Communications
 - We may have to decide whether to destroy a building to build a road or not

Modeling buildings using grammars

- Describing rules of architecture as grammar rules is an old idea
 - Vitrivus, Palladio, Durand
- This idea was proved usable using shape grammars
 - But shape grammars are automatically applied
 - Why not using L-systems instead?

Buildings using L-systems

Buildings using L-systems

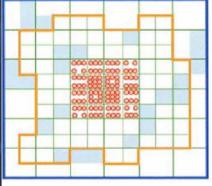
• If we use L-systems, we can also simulate the buildings construction process

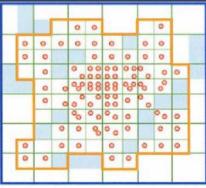
Coming up next

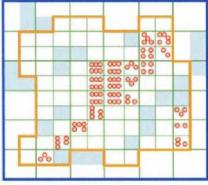
- Urban features
- Grade-separated highways
- Bridges
- Adding functions
 - Residential
 - Commercial
 - Industrial
 - Historical
 - Community
 - College

Coming up next

Using real street networks

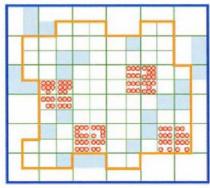

Acquisition
Interpolation between consecutive networks
Extracting/testing rules

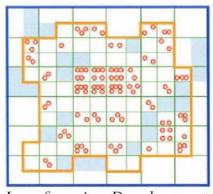

the plants


• Interactions with plants

Urban growth and suburban sprawl

• Sprawl is defined as 'uncoordinated growth'




Compact Development

Scattered Development

Linear Strip Development

Polynucleated Development

Leapfrogging Development