
RAVES Rendering
January 2005 Update

Sumanta N. Pattanaik
School of Computer Science

Topics

• Rendering for MR
• Real-Time Rendering algorithms
• Future (spring 2005)
• PhD Students
• Publications

Rendering for MR

Key Issues
Lighting and shadow

Virtual object illuminated by real light
Real object illuminated by virtual light
Shadows of virtual on real, and of real on virtual

Color Matching
Real Time (interactive rate) computation

Importance of Shadows

• Shadows are an important part of lighting
simulation:
– Lights should cast shadows on real objects even

though the light sources are virtual.

Importance of Shadows

• Helps us understand:
– Relative virtual-to-real object position and height in

space.
– Shape of a virtual shadow receiver’s surface.
– Position of nearby virtual objects that are occluded

or outside the field of view (virtual enemy in hiding).

Our Contribution

• We demonstrate two ways to inject virtual light
into a scene in the context of two practical MR
applications.

Virtual Fire Virtual Flashlight

Occlusion Models
• Our algorithms make use of the occlusion models of real
objects which are common in MR applications.

• Occlusion models describe the geometry and dimensions
of all interactive real objects in the scene. They can be pre-
measured or automatically generated.

• Model position relative to camera must be tracked in some
way.

• Usually used for determining which parts of virtual objects
are hidden by real objects closer to the camera.

• Having this geometry available lets us adapt many
algorithms from computer graphics.

Occlusion Models

• Example of the occlusion model for a
notebook (approximated by a single polygon).

• Tracked by a marker.

No occlusion model With occlusion model Tracking the model’s position

Tracking

• Need to know position relative to camera
of every interactive real object.

• Any object that is allowed to move
independently of others must also be
tracked independently.

• Several methods of tracking:
– Sensor-based (InterSense, Polhemus, GPS)
– Image-based (ARToolkit)

Tracking
• ARToolkit is an image-based tracker which

derives camera position relative to a particular
marker (and vice versa) based on its location and
tilt in the video frame.

• Developed by University of Washington’s Human
Interface Technology Lab.

• We chose ARToolkit for our tests for several
reasons:
– Light-weight
– Free
– Relatively easy to set-up
– No equipment to drag around

Virtual Fire
• Our virtual fire application simulates a real

environment light by computer-generated fire.

• The process works by calculating how the
intensity of each pixel covered by an occlusion
model is increased by the virtual flames.

Unmodified frame Virtual illumination only Illumination + flames

Virtual Fire
• Thanks to occlusion models, this calculation can be done

with many known computer graphics lighting algorithms
and can be accelerated by graphics cards. The
calculation can be simple or complex depending on the
requirements of the application.

• The original intensity of the pixel is scaled up based on
the result of the computation. Finally, virtual flames are
drawn onto the image.

Unmodified frame Virtual illumination only Illumination + flames

Virtual Wind
• A separate marker tracks the position of
a non-existing fan. Lighting on ground
shifts with flames’ position.

Virtual Flashlight
• Artificially make a room darker, and restore it
to its original intensity with a virtual flashlight.

• Done in multiple steps.
Unmodified video frame Final processed frame

Virtual Flashlight
• Step #1: Scale down intensity of pixels that
are not covered by tracked occlusion models by
some constant factor.
• Untracked pixels assumed to be unlit by virtual light.

Partially darkened frame Final processed frame

Virtual Flashlight
• Step #2: Calculate shadows from virtual
objects falling on real objects.
• Using a version of the shadow volume algorithm from
computer graphics adapted for MR.

Virtual shadows on real objects Final processed frame

Virtual Flashlight
• Step #3: Artificially darken occlusion model -covered
pixels, and simulate virtual light by darkening virtually
“lit” pixels less.
• Modified intensity is determined by the spotlight
algorithm from computer graphics.

Full virtual lighting applied Final processed frame

original intensity

partially dark (semi-lit)

maximum dark (unlit)

VIRTUAL SPOTLIGHT

Virtual Flashlight
• Step #4: Composite virtual objects and
compute shadows from real and other virtual
objects falling on them.
• Use same basic algorithm as in Step #2.

Final processed frame Final processed frame

Video

(click movie to begin)

Whole environment is the light source

• Issues:
– Capture
– Render Virtual object with the real light

• Lighting
• Shadow

Real Light

(Ph.d. Student: Ruifeng)

• Instrument the environment
– Ladybug
– Upto 15 fps per second capture capability

(dynamic light capture possible).

Real Light Capture

Rendering Using Environment Light

Pre-computation using
Basis Light Functions

Spherical
Harmonics Basis

• Self shadows by Precomputed Radiance
Transfer

Lighting & Shadows

• Shadows from virtual objects to real world

With shadow without shadow

Lighting & Shadows

with shadow without shadow

Lighting & Shadows

• Strengths
– Soft shadow
– Real area light sources
– Rendered in real time (7-35 fps for 70K

triangles)

Dynamic Object
Rendering

Problem
– Object may deform
– Pre-compute light map for each frame/pose

generates huge amount of data. Sheer data
size hinders real-time processing.

Idea
– Record on unfolded 2D map
– Compress 2D map

• Record PRT data on unfolded parameter
space

u0

u1
Object surface

Parameter space
U

V

p0

p1

Object surface U

a

c a'

b'
cŌ

b

d'

d

V

Parameter space

Parameterize 3D surface Mapping of non-vertex points

Dynamic Object
Rendering

Dynamic Object Rendering

• results

only lighting with lighting and texture PRT Map

>10 frames/secRendering speed

3.5MCompressed HDR video size

>100 MB (RGBE format)Raw video data

1.5 hours for 100 framesPre-computation time of GI
computation

2 sec. of walk (100 frames)Action

OFW (2811 vertices; 2197 triangles)Object

Color Processing
Problem:

Color of virtual objects do not match color of real world.

Solution:

Approach 1: (expensive, accurate result)
Model virtual surface reflectance accurately,
Capture the real-world lighting accurately,
Render the virtual object using the captured virtual light.

Approach 2: (inexpensive, plausible result)
Change the color statistics of the virtual object before
compositing to match the statistics of the real scene

Algorithm

• Covert pixel RGB colors to Opponent color
space (Luminance, Chrominance)

• Compute statistics: Mean and Standard
Deviation

• Shift and scale pixels of virtual frame to
partially match the statistics of Real
Frame.

• Covert back opponent colors to RGB

Low Level Optimizations

• Unroll loops by hand
• Compute statistics on a subset of all pixels

First Test Case

Without Color Adjustment

With Adjustment

Partial Adjustment

Examples

Examples

Video – No Adjustment

Video - Corrected

Conclusions

• Simple algorithm, low-level optimizations

• Our video examples run at 22 fps on a
2.53 GHz Pentium – software only

Key Issues
New Algorithm
New Data Representation

Real-Time Rendering

A Novel Hemispherical Basis
for Accurate and Efficient

Rendering

Problem Statement

Surface Reflection Incoming/Outgoing Light

F(θ, ϕ) ≈ Sample set

Problem Statement

Original Function Piecewise linear approximation

≈

Need a more compact and smoothed
representation

Better fitting Fast computation of integrals

Contribution

New set of basis functions
Formula similar to Spherical Harmonics
Designed for representing hemispherical functions

Applications in lighting simulation

Basis Functions

fi = f(x)bi(x)dx∫f(x) = fi bi(x)

g(x) = gi bi(x) ∫f(x)g(x)dx = fi gi

Spherical Harmonics

Y l
m(θ,ϕ) Φ l

m (ϕ)K l
m P l

m(cos θ)=

(0,0)

(1,-1)

(2,-2) (2,-1) (2,0) (2,1) (2,2)

(1,0) (1,1)

Spherical Harmonics
Main Properties

Simple projection and reconstruction

Analytical rotations

SH For Hemispherical Functions
Zero Hemisphere

Equator discontinuity

Artifacts

Original SH

Our Novel Basis
Shifting

Our Novel Basis

Y l
m(θ,ϕ) Φ l

m (ϕ)K l
m P l

m(cos θ)=

Spherical Harmonics

(0,0)

(1,-1)

(2,-2) (2,-1) (2,0) (2,1) (2,2)

(1,0) (1,1)

Our Novel Basis

H l
m(θ,ϕ) Φ l

m (ϕ) P l
m(2cos θ-1)= K l

m~

(0,0)

(1,-1)

(2,-2) (2,-1) (2,0) (2,1) (2,2)

(1,0) (1,1)

Hemispherical Harmonics

Application: BRDF
RepresentationPrinciple

BRDF = 4D Function
Parabolic Parameterization

Application: BRDF
Representation

Application: BRDF
Representation

SHHSH

Less Ringing

Higher Frequency

Accuracy

Application: Environment
MappingPerformance

Rotation on CPU
for SH and HSH

Added conversion
(sparse matrix)

Accuracy overcomes
computational overhead

Application : Radiance Caching
Goal : computation of indirect glossy lighting

Application : Radiance Caching

Interpolation

Goal : computation of indirect glossy lighting

∇

Application : Radiance Caching

Incident Radiance BRDF

≡ dot product

Goal : computation of indirect glossy lighting

Application : Radiance Caching
Low frequency BRDFs

New translational
gradients formulas

Rotational gradient
replaced by rotation

Results

Examples

Examples

Examples

Examples

Rendering
Related Research

• Detail Extraction using Level Set Method
for Realistic Display

• Monte Carlo Noise Reduction
• HDR Image Data Compression

Level Set Tone Mapping

• Separate into profile and detail
• Compress profile
• Add back detail compute luminance in log domain

separate details from profile

compress the profile

add details to compressed profile

recover compressed LDR image

Level Set Tone Mapping

– Find profile using level set methods

• I is the luminance of HDR image
• k is the curvature
• F(k) is speed function

0)(=∇+ IFIt κ

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−+−

∗−
=

∗−=

−+−+ 22exp

)(

yyxx DDDD

sen
e

eF κκ

Level Set Tone Mapping

Comparison of images resulting from our method
(right) vs. resulting from a method using S-
compression alone (left).

Monte Carlo Noise Reduction
• Facts

– insufficient sampling rate
– Outliers & inter-pixel incoherence

• Actual pixel value contaminated
– additive or multiplication?

Monte Carlo Noise Reduction

• Natural image statistics

)1(2

1),;(/

cc

c
c

sc
ccc

pp
sZ

e
Z

pscP
cp

c

Γ=

= −

()
()

()
()

()
()

()
()

() ()
() () ⎟

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

ΓΓ
ΓΓ

+

Γ
Γ

+
Γ
Γ

=

Γ
Γ

+
Γ
Γ

=

nc

ncnc

n

nn

c

cc

y

n

nn

c

cc
y

pp
ppss

p
ps

p
ps

m

p
ps

p
ps

/1/1
/3/36

/1
/5

/1
/5

/1
/3

/1
/3

22

24

4

22
2σ

where sc, pc can be recovered by the following equations:

Monte Carlo Noise Reduction

• Statistical noise model
– Laplacian modeling

-1 0 1
0

1

2

s:0.13 p:0.71,fitting error:0.4076

La
p(

x)
,p

(x
)

-1 0 1
0

2

4

6

8
s:0.03 p:0.57,fitting error:0.3621

La
p(

x)
,p

(x
)

-1 0 1
0

2

4

6

8
s:0.05 p:0.71,fitting error:0.3381

La
p(

x)
,p

(x
)

-1 0 1
0

5

10
s:0.02 p:0.55,fitting error:0.5338

La
p(

x)
,p

(x
)

-1 0 1
0

2

4

6

8
s:0.05 p:0.70,fitting error:0.3537

La
p(

x)
,p

(x
)

-1 0 1
0

1

2

3

4

s:0.04 p:0.50,fitting error:0.2179

La
p(

x)
,p

(x
)

-1 0 1
0

2

4

6
s:0.04 p:0.57,fitting error:0.2471

La
p(

x)
,p

(x
)

-1 0 1
0

5

10

s:0.01 p:0.43,fitting error:0.6035

La
p(

x)
,p

(x
)

-1 0 1
0

2

4

6

s:0.04 p:0.56,fitting error:0.3199

La
p(

x)
,p

(x
)

Simoncelli, E. P., Freeman W. T., THE STEERABLE PYRAMID: A FLEXIBLE ARCHITECTURE FOR MULTI-SCALE
DERIVATIVE COMPUTATION. IEEE ICIP’ 1995.

Monte Carlo Noise Reduction

• Beyesian denoising
– Maximum value
– Expected value (we take this)

– s, p are user specified parameters
• S: [0.0, 0.15]
• p: [0.5, 1.0]

|ˆ() (|)c yc y P c y cdc= ∫
() ()

ˆ()
() ()

n c

n c

P y c P c cdc
c y

P y c P c dc

−
=

−
∫
∫

Monte Carlo Noise Reduction

• Results

Monte Carlo Noise Reduction

• Bilateral Filtering

– Adaptive filtering kernel:

∫ ∫
∫ ∫

∞+

∞−

∞+

∞−

+∞

∞−

+∞

∞−=
ξξξ

ξξξξ

dxffsxc

dxffsxcf
xh

))(),((),(

))(),((),()(
)(

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

2

2

)()(
2
1exp))(),((

2
1exp),(

r

d

xff
xffs

x
xc

σ
ξ

ξ

σ
ξ

ξ

∫ ∫
∫ ∫

∞+

∞−

∞+

∞−

+∞

∞−

+∞

∞−=
ξξ

ξξξ

dxc

dxcf
xf

),(

),()(
)(~

)(~)(xfxf →

Monte Carlo Noise Reduction

• Numerical formulation

• window size:
• parameters:

∑ ∑

∑ ∑

−= −=

−= −=

++

++++
=

d

d

d

d

d

d

d

d

u v

u v

jifvjuifsvuc

jifvjuifsvucvjuif
jif σ

σ

σ

σ

σ

σ

σ

σ
3

3

3

3

3

3

3

3

)),(~),,((),(

)),(~),,((),(),(
),(ˆ

dd σσ 66 ×

∑ ∑

∑ ∑

−= −=

−= −=

++
=

d

d

d

d

d

d

d

d

u v

u v

vuc

vucvjuif
jif σ

σ

σ

σ

σ

σ

σ

σ
3

3

3

3

3

3

3

3

),(

),(),(
),(~

4.0,2 == dr σσ

Monte Carlo Noise Reduction

• results

left: our method
middle: standard bilateral filtering
right: Wiener filtering

noisy, 20 samples

2, 0.41802s
(400)

6.5s
.0275

183s(5)
.0312

Conf. room
512×347

2, 0.43602s
(300)

9.8s
.2202

286s(20)
.3630

Cabin
512×512

2, 0.42100s
(500)

5.0s
0.089

50s(2)
0.152

Living room
400×300

accuratedenoisednoisy

HDR Image Compression

• 3 floats for R,G,B
– 12 bytes / pixel

• High dynamic range
– existing image/video codec not applicable

• 3 bytes for R,G,B

HDR Image Compression
• DCT Based

– Compression scheme

– HDR image lossless compression:
• Color base: lossless (CABAC [FFV1],

LJPEG, etc.)
• Common exponent: lossless

(CABAC)
– HDR image lossy compression:

• Color base: lossy (AJPEG, etc.)
• Common exponent: lossless

(CABAC)

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

+=
⋅=
⋅=
⋅=
⋅=

=

128

/256
 ofexponent mantissa,:,

),,max(

eE
VbB
VgG
VrR

vmV
vem

bgrv

HDR Image Compression

• Lossy RGB compression
– E is used to guarantee

minimum quantization
error for each block pixel.

– Adaptive quantization
cqQQ =

64,...,1,2 }min{}max{ == − iq ii EE
c

⎥⎦
⎥

⎢⎣
⎢ +−

=
2

3}min{}max{ ii
c

EEq

or

HDR Image Compression
• HDR video compression

– HDR video lossless compression
• Color base: lossless (CABAC, etc.)
• Common exponent: lossless (CABAC)

– HDR video lossy compression
• Color base: lossy (MJPEG, MPEG, etc.)
• Common exponent: lossless (CABAC)

HDR Image Compression

• “room”

(a) Original (b) AJPEG+CABAC, 0 (c) AJPEG+CABAC, 16 (d) JPEG+CABAC, 16

Size: 800X754 dynamic range: [0.001, 20.875]

1.853.71.850.0460.3851.0, 97.9%JPEG+CABAC, 16

1.158.50.620.0460.4178.5, 96.8%AJPEG+CABAC,16

.5965.20.130.0470.38123.0, 95.0%AJPEG+CABAC,0

n/an/an/a0.0900.30269.0, 89.0%LS-JPEG+CABAC

n/an/an/a0.1300.36181.0, 92.5%CABAC+CABAC

n/an/an/an/an/a701.0, 71.0%OpenExr

n/an/an/an/an/a786.0,69.0%RGBE

10-3dB10-3sec.sec.KB

VDPPSNRMSEtdtcSize

HDR Image Compression

• JPEG 2000 based

HDR Image Compression/Decompression Scheme

HDR Image Compression

• JPEG 2000 based
– Logarithm transform and quantization

– Quantization error

()

()⎥
⎦

⎤
⎢
⎣

⎡
−⋅

−
−

=

=

=

12):(

):]',','([],,[
],,[log]',','[

minmax

min y

xx
xxyxf

nbgrfbgr
bgrbgr

22 1
minmax

−
−

= +n

xxε

HDR Image Compression

0.01 0.02 0.03 reference

1.7/0.671.7/0.681.7/0.64Timing(s.)

536996VDP(10-3)

0.0940.200.60MSE

704623Size(KB)

0.030.020.01rate

• “memorial”
size 512X768, 1,313K(RGBE), 823K(OpenExr)

Compression rate Comparison

HDR Image Compression

reference compressed

7,1729,668553“tahoe”

2,1782,683149“BigFogMap”

1,2531,31370“memorial”

8231,11665“park”

OpenExrRGBErate=0.03

Comparison with other formats

Cache Based Real_time Rendering

Minimally Computing Cache and Hardware Splatting for
faster rendering

• Cache Point Computation
• Empirical 3D Space Sampling

– Scene complexity metric
• Geometric complexity
• Neighborhood complexity

Students supported
• Ruifeng Xu

– High Dynamic Range Compression and Display
– Physically Based Rendering
– MR rendering

• Jaakko Konttinen
– Real Time Rendering
– MR Rendering
– Physically Based Rendering

• Mark Colbert
– Rendering Interface
– Physically Based Rendering

• Ahmet O. Akyuz
– HDR Imaging
– Color Transfer

• Yugang Min
– MR in PDA

• Pascal Gautron (from IRISA/INRIA France)
– Physically Based Rendering
– Real-Time Rendering

• Jaroslav Krivanek (from IRISA/INRIA France)
– Physically Based Rendering
– Real-Time Rendering
– Perception Based Rendering

Publications
• C. E. Hughes, Jaakko Konttinen and S. N. Pattanaik, “The Future of

Mixed Reality: Issues in Illumination and Shadows,” Proceedings of
I/ITSEC 2004, Orlando, December 6-9, 2004.

• C. E. Hughes, Erik Reinhard, Jaakko Konttinen and S. N. Pattanaik,
“Achieving Interactive-Time Realistic Illumination in Mixed reality,”
Proceedings of Army Science Conference (ASC) 2004, Orlando, FL,
November 29-December 2, 2004. (Poster Presentation Only)

• Erik Reinhard, Ahmet O. Akyuz, Mark Colbert, Matthew O’Connor
and C. E. Hughes, “Real-Time Color Blending of Rendered and
Captured Video,” Proceedings of I/ITSEC 2004, Orlando, December
6-9, 2004.

• Ruifeng Xu, S. N. Pattanaik and C. E. Hughes, “Real-time
Rendering of Dynamic Objects in Dynamic, Low-Frequency Lighting
Environments,” Computer Animation and Social Agents (CASA
2004), Geneva, Switzerland, July 7-9, 2004.

Publications (cont..)
• Oguz Ahmet, Erik Reinhard, S. N. Pattanaik, “Color Appearance in

High Dynamic Range Imaging”, Conference on Applied Perception
2004 (Accepted, to be presented in Aug 2004).

• Ruifeng Xu, S. N. Pattanaik, “Non-Iterative, Robust Monte Carlo
Noise Reduction”, IEEE Computer Graphics and Applications.
Accepted for publication. February 2004.

• Pascal Guatron, Jaroslav Krivakek, S. N. Pattanaik, Kadi
Boutaouch, “A Novel Hemispherical Basis for Accurate and Efficient
Rendering”. Proceedings of 2nd Eurographics Symposium on
Rendering 2004 (July 2004).

• Ruifeng Xu, S. N. Pattanaik, Charles Hughes, “Real-time rendering
of dynamic objects in dynamic, low frequency environments”.
Proceedings of Computer Graphics and Social Agents Conference
(CASA) 2004, MIRALab, Switzerland, Accepted in May 2004.

Publications (cont..)
• Jaroslav Krivakek, S. N. Pattanaik, Jiri Zara, “Adaptive Mesh

Subdivision for Precomputed Radiance Transfer”, Proceedings
of Spring Conference in Computer Graphics (SCCG 2004), Slovak
Republic, ACM-Press, 2004.

• J. Krivakek, P. Gautron, S. N. Pattanaik, K. Bouatouch, “Radiance
Caching for Efficient Global Illumination Computation”, Accepted in
TVCG (Jan 2004).

• Walter Mundt, S. N. Pattanaik, Erik Reinhard, “Beyond Triangles:
Using Ray-Casting to Render New Directly Primitives In Graphics
Hardware” accepted for GDC 2005 Poster presentation.

Submissions (under review)
• Jaroslav Krivakek, Jaakko Konttinen, S. N. Pattanaik, K. Bouatouch,

“Fast Approximation to Spherical Harmonic Rotation”, Submitted for
publication in Journal of Graphics Tools (2005).

• Ruifeng Xu and S. N. Pattanaik, C. E. Hughes “HDR Still Image in
JPEG 2000”, submitted for publication in Journal of Graphics Tools
(2004).

• Ruifeng Xu and S. N. Pattanaik, C. E. Hughes “High Dynamic
Range Image and Video Data Compression”, submitted for
publication in Visual Computers (2004).

Tutorials Presentations
• Paul Debevec, Erik Reinhard, Greg Ward, Sumanta Pattanaik ,

“High Dynamic Range Imaging”, ACM-SIGGRAPH 2004.
• Sumanta Pattanaik, Erik Reinhard, “High Dynamic Range Imaging”

Game Developer Conference, March 2004.

