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Rendering for MR

Key Issues 
Lighting and shadow

Virtual object illuminated by real light
Real object illuminated by virtual light
Shadows of virtual on real, and of real on virtual

Color Matching
Real Time (interactive rate) computation



Importance of Shadows

• Shadows are an important part of lighting 
simulation:
– Lights should cast shadows on real objects even 

though the light sources are virtual.



Importance of Shadows

• Helps us understand:
– Relative virtual-to-real object position and height in 

space.
– Shape of a virtual shadow receiver’s surface.
– Position of nearby virtual objects that are occluded 

or outside the field of view (virtual enemy in hiding).



Our Contribution

• We demonstrate two ways to inject virtual light 
into a scene in the context of two practical MR 
applications.

Virtual Fire Virtual Flashlight



Occlusion Models
• Our algorithms make use of the occlusion models of real 
objects which are common in MR applications.

• Occlusion models describe the geometry and dimensions 
of all interactive real objects in the scene.  They can be pre-
measured or automatically generated.

• Model position relative to camera must be tracked in some 
way.

• Usually used for determining which parts of virtual objects 
are hidden by real objects closer to the camera.

• Having this geometry available lets us adapt many 
algorithms from computer graphics.



Occlusion Models

• Example of the occlusion model for a 
notebook (approximated by a single polygon).

• Tracked by a marker.

No occlusion model With occlusion model Tracking the model’s position



Tracking

• Need to know position relative to camera 
of every interactive real object.

• Any object that is allowed to move 
independently of others must also be 
tracked independently.

• Several methods of tracking:
– Sensor-based (InterSense, Polhemus, GPS)
– Image-based (ARToolkit)



Tracking
• ARToolkit is an image-based tracker which 

derives camera position relative to a particular 
marker (and vice versa) based on its location and 
tilt in the video frame.

• Developed by University of Washington’s Human 
Interface Technology Lab.

• We chose ARToolkit for our tests for several 
reasons:
– Light-weight
– Free
– Relatively easy to set-up
– No equipment to drag around



Virtual Fire
• Our virtual fire application simulates a real 

environment light by computer-generated fire.

• The process works by calculating how the 
intensity of each pixel covered by an occlusion 
model is increased by the virtual flames.

Unmodified frame                  Virtual illumination only     Illumination + flames



Virtual Fire
• Thanks to occlusion models, this calculation can be done 

with many known computer graphics lighting algorithms 
and can be accelerated by graphics cards.  The 
calculation can be simple or complex depending on the 
requirements of the application.

• The original intensity of the pixel is scaled up based on 
the result of the computation.  Finally, virtual flames are 
drawn onto the image.

Unmodified frame                  Virtual illumination only     Illumination + flames



Virtual Wind
• A separate marker tracks the position of 
a non-existing fan.  Lighting on ground 
shifts with flames’ position.



Virtual Flashlight
• Artificially make a room darker, and restore it 
to its original intensity with a virtual flashlight.

• Done in multiple steps.
Unmodified video frame Final processed frame



Virtual Flashlight
• Step #1: Scale down intensity of pixels that 
are not covered by tracked occlusion models by 
some constant factor.
• Untracked pixels assumed to be unlit by virtual light.

Partially darkened frame Final processed frame



Virtual Flashlight
• Step #2: Calculate shadows from virtual 
objects falling on real objects.
• Using a version of the shadow volume algorithm from 
computer graphics adapted for MR.

Virtual shadows on real objects Final processed frame



Virtual Flashlight
• Step #3: Artificially darken occlusion model -covered 
pixels, and simulate virtual light by darkening virtually 
“lit” pixels less.
• Modified intensity is determined by the spotlight 
algorithm from computer graphics.

Full virtual lighting applied Final processed frame

original intensity

partially dark (semi-lit)

maximum dark (unlit)

VIRTUAL SPOTLIGHT



Virtual Flashlight
• Step #4: Composite virtual objects and 
compute shadows from real and other virtual 
objects falling on them.
• Use same basic algorithm as in Step #2.

Final processed frame Final processed frame



Video

(click movie to begin)



Whole environment is the light source

• Issues:
– Capture
– Render Virtual object with the real light

• Lighting
• Shadow

Real Light

(Ph.d. Student: Ruifeng)



• Instrument the environment
– Ladybug
– Upto 15 fps per second capture capability 

(dynamic light capture possible).

Real Light Capture



Rendering Using Environment Light



Pre-computation using
Basis Light Functions

Spherical 
Harmonics Basis



• Self shadows by Precomputed Radiance 
Transfer

Lighting & Shadows



• Shadows from virtual objects to real world

With shadow without shadow

Lighting & Shadows



with shadow without shadow

Lighting & Shadows



• Strengths
– Soft shadow
– Real area light sources
– Rendered in real time (7-35 fps for 70K 

triangles)



Dynamic Object 
Rendering

Problem
– Object may deform
– Pre-compute light map for each frame/pose 

generates huge amount of data. Sheer data 
size hinders real-time processing. 

Idea
– Record on unfolded 2D map
– Compress 2D map



• Record PRT data on unfolded parameter 
space

u0

u1
Object surface

Parameter space
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Parameterize 3D surface Mapping of non-vertex points

Dynamic Object 
Rendering



Dynamic Object Rendering

• results

only lighting        with lighting and texture                  PRT Map  

>10 frames/secRendering speed

3.5MCompressed HDR video size

>100 MB (RGBE format)Raw video data

1.5 hours for 100 framesPre-computation time of GI 
computation

2 sec. of walk (100 frames)Action

OFW (2811 vertices; 2197 triangles)Object



Color Processing
Problem:

Color of virtual objects do not match color of real world.

Solution:

Approach 1:  (expensive, accurate result)
Model virtual surface reflectance accurately,
Capture the real-world lighting accurately, 
Render the virtual object using the captured virtual light.

Approach 2: (inexpensive, plausible result)
Change the color statistics of the virtual object before 
compositing to match the statistics of the real scene



Algorithm

• Covert pixel RGB colors to Opponent color 
space (Luminance, Chrominance)

• Compute statistics: Mean and Standard 
Deviation

• Shift and scale pixels of virtual frame to 
partially match the statistics of Real 
Frame.

• Covert back opponent colors to RGB



Low Level Optimizations

• Unroll loops by hand
• Compute statistics on a subset of all pixels



First Test Case



Without Color Adjustment



With Adjustment



Partial Adjustment



Examples



Examples



Video – No Adjustment



Video - Corrected



Conclusions

• Simple algorithm, low-level optimizations

• Our video examples run at 22 fps on a 
2.53 GHz Pentium – software only



Key Issues 
New Algorithm
New Data Representation

Real-Time Rendering



A Novel Hemispherical Basis 
for Accurate and Efficient 

Rendering



Problem Statement

Surface Reflection Incoming/Outgoing Light

F(θ, ϕ) ≈ Sample set



Problem Statement

Original Function Piecewise linear approximation

≈

Need a more compact and smoothed
representation

Better fitting Fast computation of integrals



Contribution

New set of basis functions
Formula similar to Spherical Harmonics
Designed for representing hemispherical functions

Applications in lighting simulation



Basis Functions

fi =    f(x)bi(x)dx∫f(x) = fi bi(x)

g(x) = gi bi(x) ∫f(x)g(x)dx = fi gi



Spherical Harmonics

Y l
m(θ,ϕ) Φ l

m (ϕ)K l
m P l

m(cos θ)=

(0,0)

(1,-1)

(2,-2) (2,-1) (2,0) (2,1) (2,2)

(1,0) (1,1)



Spherical Harmonics
Main Properties

Simple projection and reconstruction

Analytical rotations



SH For Hemispherical Functions
Zero Hemisphere

Equator discontinuity

Artifacts

Original SH



Our Novel Basis
Shifting



Our Novel Basis

Y l
m(θ,ϕ) Φ l

m (ϕ)K l
m P l

m(cos θ)=

Spherical Harmonics

(0,0)

(1,-1)

(2,-2) (2,-1) (2,0) (2,1) (2,2)

(1,0) (1,1)



Our Novel Basis

H l
m(θ,ϕ) Φ l

m (ϕ) P l
m(2cos θ-1)= K l

m~

(0,0)

(1,-1)

(2,-2) (2,-1) (2,0) (2,1) (2,2)

(1,0) (1,1)

Hemispherical Harmonics



Application: BRDF 
RepresentationPrinciple

BRDF = 4D Function
Parabolic Parameterization



Application: BRDF 
Representation



Application: BRDF 
Representation

SHHSH

Less Ringing

Higher Frequency

Accuracy



Application: Environment
MappingPerformance

Rotation on CPU 
for SH and HSH

Added conversion 
(sparse matrix)

Accuracy overcomes
computational overhead



Application : Radiance Caching
Goal : computation of indirect glossy lighting



Application : Radiance Caching

Interpolation

Goal : computation of indirect glossy lighting

∇



Application : Radiance Caching

Incident Radiance BRDF

≡ dot product

Goal : computation of indirect glossy lighting



Application : Radiance Caching
Low frequency BRDFs

New translational
gradients formulas

Rotational gradient 
replaced by rotation

Results



Examples



Examples



Examples



Examples



Rendering
Related Research

• Detail Extraction using Level Set Method 
for Realistic Display

• Monte Carlo Noise Reduction
• HDR Image Data Compression



Level Set Tone Mapping

• Separate into profile and detail
• Compress profile
• Add back detail compute luminance in log domain 

separate details from profile 

compress the profile 

add details to compressed profile 

recover compressed LDR image 



Level Set Tone Mapping

– Find profile using level set methods

• I is the luminance of HDR image
• k is the curvature
• F(k) is speed function
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Level Set Tone Mapping

Comparison of images resulting from our method 
(right) vs. resulting from a method using S-
compression alone (left).



Monte Carlo Noise Reduction
• Facts

– insufficient sampling rate
– Outliers & inter-pixel incoherence

• Actual pixel value contaminated
– additive or multiplication?



Monte Carlo Noise Reduction

• Natural image statistics
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Monte Carlo Noise Reduction

• Statistical noise model
– Laplacian modeling
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Monte Carlo Noise Reduction

• Beyesian denoising
– Maximum value
– Expected value (we take this)

– s, p are user specified parameters
• S: [0.0, 0.15]
• p: [0.5, 1.0]
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Monte Carlo Noise Reduction

• Results



Monte Carlo Noise Reduction

• Bilateral Filtering

– Adaptive filtering kernel: 
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Monte Carlo Noise Reduction

• Numerical formulation

• window size:
• parameters: 
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Monte Carlo Noise Reduction

• results

left: our method
middle: standard bilateral filtering
right: Wiener filtering 

noisy, 20 samples

2, 0.41802s
(400)

6.5s
.0275

183s(5)
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Conf.  room
512×347
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286s(20)
.3630

Cabin
512×512

2, 0.42100s
(500)

5.0s
0.089

50s(2)
0.152

Living room
400×300

accuratedenoisednoisy



HDR Image Compression

• 3 floats for R,G,B
– 12 bytes / pixel

• High dynamic range
– existing image/video codec not applicable

• 3 bytes for R,G,B



HDR Image Compression
• DCT Based

– Compression scheme

– HDR image lossless compression:
• Color base: lossless (CABAC [FFV1], 

LJPEG, etc.)
• Common exponent: lossless 

(CABAC)
– HDR image lossy compression:

• Color base: lossy (AJPEG, etc.)
• Common exponent: lossless 

(CABAC)
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HDR Image Compression

• Lossy RGB compression
– E is used to guarantee 

minimum quantization 
error for each block pixel.

– Adaptive quantization
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HDR Image Compression
• HDR video compression

– HDR video lossless compression
• Color base: lossless (CABAC, etc.)
• Common exponent: lossless (CABAC)

– HDR video lossy compression
• Color base: lossy (MJPEG, MPEG,  etc.)
• Common exponent: lossless (CABAC)



HDR Image Compression

• “room”

(a) Original              (b) AJPEG+CABAC, 0    (c) AJPEG+CABAC, 16   (d) JPEG+CABAC, 16 

Size: 800X754 dynamic range: [0.001, 20.875] 

1.853.71.850.0460.3851.0, 97.9%JPEG+CABAC, 16

1.158.50.620.0460.4178.5, 96.8%AJPEG+CABAC,16

.5965.20.130.0470.38123.0, 95.0%AJPEG+CABAC,0

n/an/an/a0.0900.30269.0, 89.0%LS-JPEG+CABAC

n/an/an/a0.1300.36181.0, 92.5%CABAC+CABAC

n/an/an/an/an/a701.0, 71.0%OpenExr

n/an/an/an/an/a786.0,69.0%RGBE

10-3dB10-3sec.sec.KB

VDPPSNRMSEtdtcSize



HDR Image Compression

• JPEG 2000 based

HDR Image Compression/Decompression Scheme 



HDR Image Compression

• JPEG 2000 based
– Logarithm transform and quantization

– Quantization error
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HDR Image Compression

0.01                                         0.02                                           0.03           reference

1.7/0.671.7/0.681.7/0.64Timing(s.)

536996VDP(10-3)

0.0940.200.60MSE

704623Size(KB)

0.030.020.01rate

• “memorial”
size 512X768, 1,313K(RGBE), 823K(OpenExr)

Compression rate Comparison



HDR Image Compression

reference                         compressed

7,1729,668553“tahoe”

2,1782,683149“BigFogMap”

1,2531,31370“memorial”

8231,11665“park”

OpenExrRGBErate=0.03

Comparison with other formats



Cache Based Real_time Rendering

Minimally Computing Cache and Hardware Splatting for 
faster rendering

• Cache Point Computation
• Empirical 3D Space Sampling

– Scene complexity metric
• Geometric complexity
• Neighborhood complexity
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