

Shared Imagination: Creative Collaboration in Mixed Reality

Charles Hughes
Christopher Stapleton
July 26, 2005

Examples

- Team performance training
- Emergency planning
- Collaborative design
- Experience modeling
- Scientific virtualization
- Guided rehabilitation
- Science Center groups
- Entertainment (design and experience)

What We Must Support

- Jointly visualized "what if?" scenarios
 - Face-to-face interactions
 - Alternative POVs
 - Personal and group creation
- Enablers
 - Tangible and tactile components
 - Constructive distractions (sandboxes)
 - Shared display (1st & 3rd person views)
 - Shared audio landscape
 - Scalability, interoperability & portability

MR Contexts

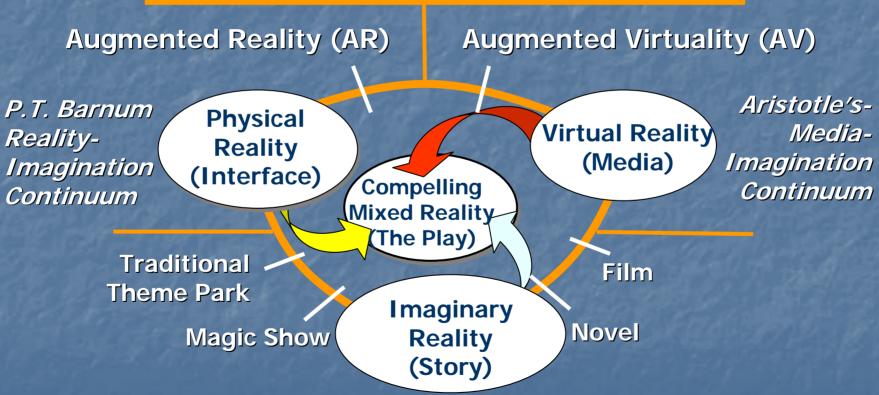
- Physical Reality (PR)
 - real world
- Virtual Reality (VR)
 - purely synthetic
- Augmented Reality (AR)
 - virtual assets registered in real world
- Augmented Virtuality (AV)
 - real (people, props) layered in virtual space

Mixed Reality Continuum

Physical Reality

Augmented Reality

Augmented Virtuality


Virtual Reality

Creative Process in MR

- PR is constrained by physical space
- VR limits person-to-person expression and context of PR
- AR and AV support rich layering
- Collaboration often requires moving smoothly along the MR continuum

Milgram + Imagination

Milgram's Reality-Virtuality Continuum

Visual Rendering / Capture

HMDs

Video
Light capture
26-July-2005

Dome Screens

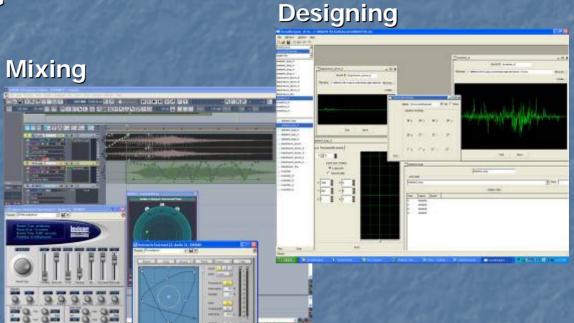
Demo Dome

Flat World

Creative Collaboration

MR Windows

MR Video See-Through


Audio Capture / Rendering

Surround Hydrophones

Holophone

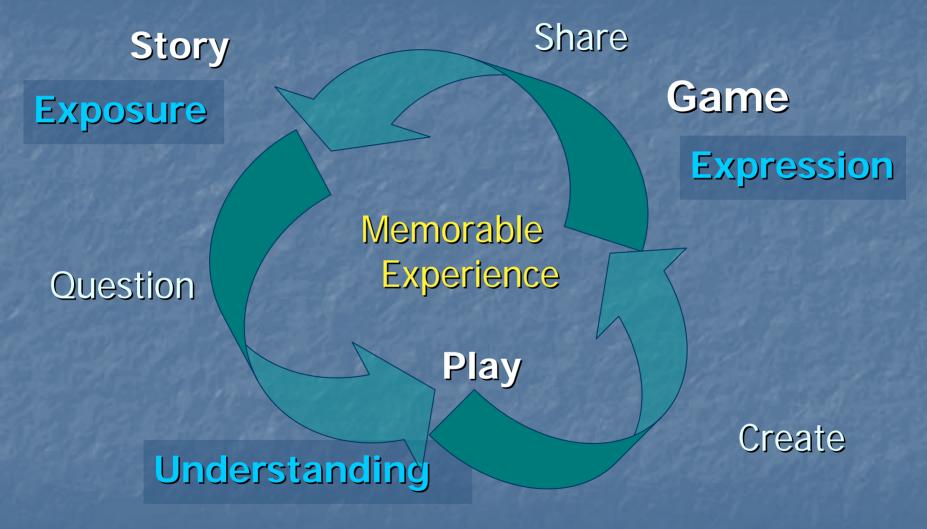
Delivery in constrained settings

Special Effects

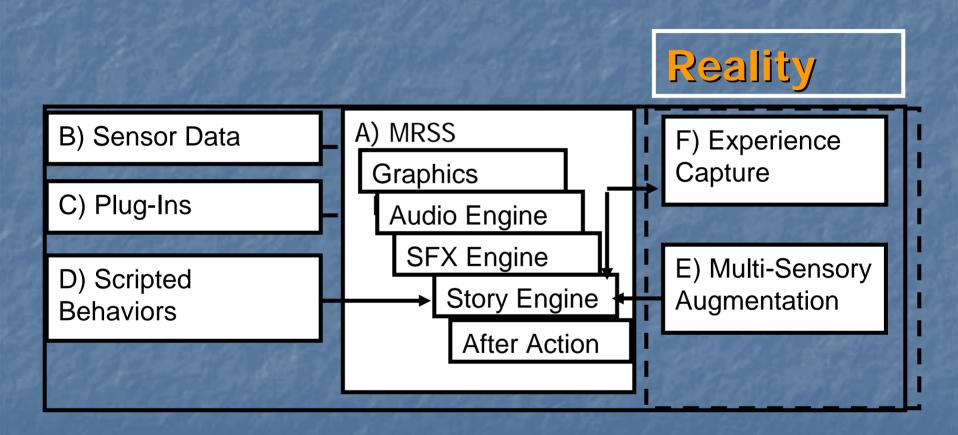
- Colorkinetics SmartJack3 (USB to DMX)
- Colorkinetics JuiceBox2 / iColor MR Lights
- Gilderfluke MP3-50/40
- 4 Channel Dimmer Packs
- Pneumatic / Smoke System
- Sound Transducers ("Bass Shakers")

Tracking

- Technologies
 - Magnetic
 - Optical
 - Vision (often with markers/features)
 - Acoustical
 - Inertial
- Hybrid (hardware and soft/hardware)
- Calibration


Registration / Illumination

- Virtual and real must be properly placed relative to each other
- Inter-occlusion must be properly managed
- Mutual shadowing must occur, including shadows from real caused by virtual light
- The effects of ambient light (real and virtual) must be rendered


Story

- Virtual characters must have appropriate behaviors, reactive and proactive
- If appropriate, guidance should be provided to user(s) to attract them to overlooked activities / objects
- Replay must be provided for entertainment, review, etc.

Story/Play/Game Convergence

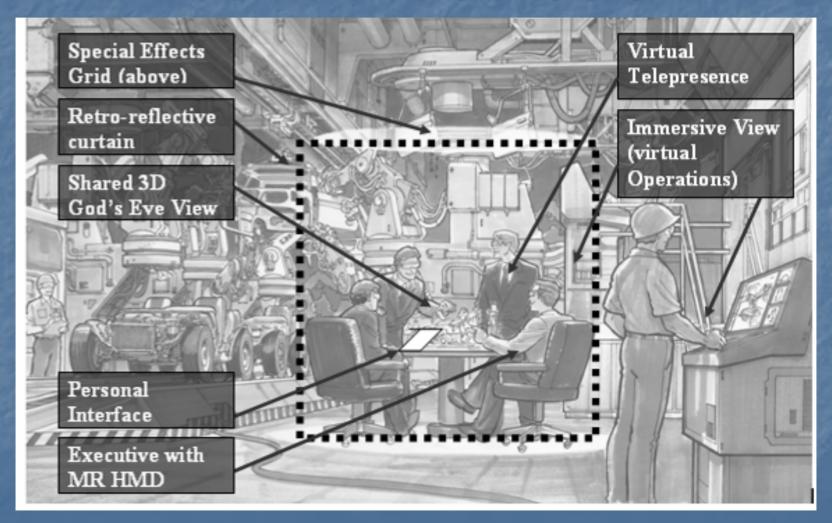
MR Software

MR Software Suite

- Platform neutral
- Story Engine
 - Agent-based
 - Plug-in architecture
- Audio Engine
 - Constraint-based adaptation (speaker placement)
- Graphics Engine
- DMX Engine
- Experience capture
 - After Action Review
 - Human Experience Modeler

An Innovative Interface: The Demo Dome

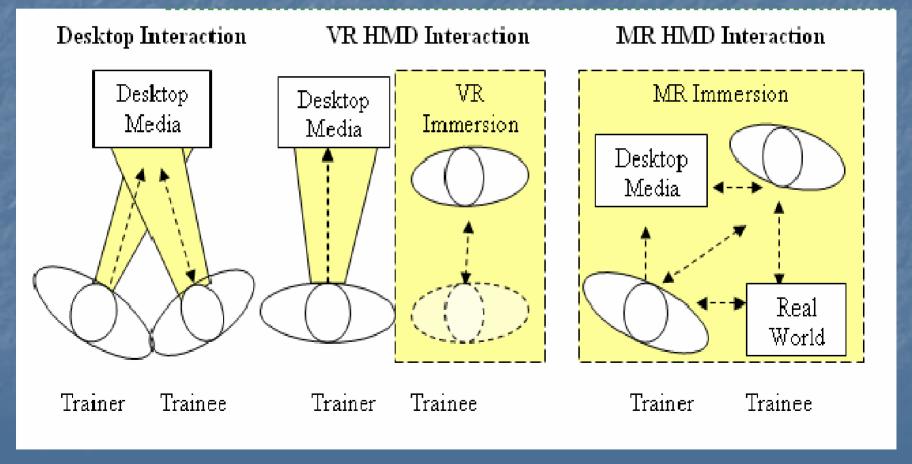
MS Demo Dome


Placing Real Entities into Virtual Environments

Demo Dome Characteristics

- Lightweight
- Relatively Inexpensive
- Tolerant of lighting changes
- Distinct POVs
 - E.g., consider a city planner and an architect
 - Both need a common context (the cityscape)
 - Each wants specialized information (codes vs physical / aesthetic characteristics)

Examples


Peer Collaboration

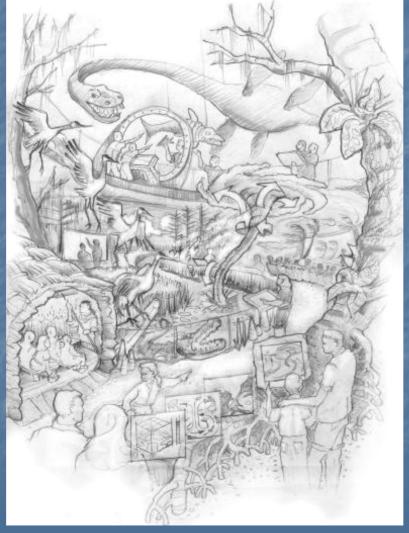
Along the Continuum

- Start in PR
 - look at current plant
- Move to AR
 - add new equipment and new windows
- Individuals jump to VR
 - privately review designs
- Move to AV
 - see each other while surrounded by new design

Trainer/Trainee Collaboration

Military Training

Merging Realities


Trainer View and Input

- Multiple POVs
 - VR, MR, PR
- Auditory commands and cues
- Taps on shoulder (haptic vest)
- Visual cues
- Visual and direct auditory interaction
- After action review

Free Choice Learning

Water's Journey through ...

MR Sea Creature @ OSC

Parent / Child Interaction

- Real
- Relevant
- Relational

Human Experience Modeler

1. Participant's Kitchen

- 1. Behavior (Video)
 - 2. Audio (Ambient Surround)

2. Kitchen Capture:

Spatial (Visual Laser Scan)

6. Embedded Program:

Surround Audio Cues, Voice Activation, Passive Tracking.

5. RECA (Real-time Experience Capture and Analysis):

Performance recording, Data Collection, Replay.

3. Story: Dynamic Virtual Capture: Scenario Audio, Visual, Scripting Behavior Simulated Cues: Audio, Visual, Spatial Spatial Context: (Passive Haptic): Modular Green Screen

Mixed Reality (MR) Human Experience Modeler (HEM) SCENARIO SUBJECT PERFORMANCE ENABLING TECHNOLOGY *Live RENDERING CAPTURE MONITORING DISPLAY *Avatar Script Time *Agent *Robotic Visual Visual Visual Tracking Assets Acqueact. *Vehicle *Observer **Environment** State Audio Audio Audio Orientation *Command *Trainer State (ROE) Interface Haptic Haptic Haptic Registration *Tutor Communication Procedural Cognition Offactory Offactors Offactory Condition Collaboration Gastronomic Gastronomic Data Gastronomic NETWORKING: MIXED REALITY SOFTWARE SYSTEM SCENARIO SCRIPT AND EXPERIMENTAL ENVIRONMENT: OBSERVATION, MONITORING AND ADAPTATION INTERFACE (Rapid Scenario Development). PERFORMANCE REVIEW ANALYSIS REPLAY AGGREGATE **EPISTOLOGY** SYSTEM ADAPTION CAPTURE

Rehabilitation: Blaine's Breakfast

Rehab Specialist Input

- Auditory commands and cues
- Tap on shoulder (haptic vest)
- Visual cues
- Visual and direct auditory interaction
- After action review

We wish to thank our partners

Office of Naval Research

UNIVERSITY OF

CENTRAL FLORIDA

Charles E. Hughes

School of Computer Science

& Media Convergence Lab

& School of Film and Digital Media

& Text and Technology Program (English)

E-Mail: ceh@cs.ucf.edu

Home Page: http://www.cs.ucf.edu/~ceh/

Graphics Lab: http://graphics.cs.ucf.edu

Media Convergence Lab: http://mcl.ucf.edu

CENTRAL FLORIDA

Christopher B. Stapleton

Media Convergence Lab

- & Institute for Simulation and Training
- & School of Film and Digital Media
- & Simiosys

E-Mail: chris@mcl.ucf.edu

Home Page: http://www.christopher.stapleton.net

Media Convergence Lab: http://mcl.ucf.edu