
Adaptive Scene Synchronization for Adaptive Scene Synchronization for
Virtual and Mixed Reality Virtual and Mixed Reality

EnvironmentsEnvironments

Felix G. Hamza-Lup

School of Computer Science, School of Optics,
University of Central Florida

Outline
• Distributed Collaborative Environments (DCE)

– Mixed + Virtual Reality (MR/VR), Distributed Systems
– Examples of MR/VR based DCE & Trend
– Dynamic Shared State

• Adaptive Scene Synchronization Algorithm
– Drift Value, Drift Matrix
– Fixed vs. Adaptive Threshold
– Quantitative Assessment

• Experimental Results
– Scenario one – 2 nodes
– Scenario two – 5 nodes

• Conclusions and Future Work

Distributed Collaborative Environments
- Examples of MR/VR based DCE & Trend

• DCE application
– Information/knowledge dissemination
– Reduced costs, time and risks
– Increased efficiency through team work

• Examples & Trend
– Industry

• Military simulations: (VR) SIMNET, NPSNET, (MR) MOUT …
• Entertainment: (VR) networked games, (MR) Project (ISMR’99) …
• Medicine: (AR) training tools (MMVR’03) …

– Academia: (VR) MASSIVE, DIVE, DEVA, (AR) Studierstube, Coterie…
– Trend toward Mixed Reality (focus on AR)

Distributed Collaborative Environments
- Dynamic Shared State

“The dynamic shared state constitutes the changing information
that multiple machines must maintain about the networked
Virtual Environment” (“Networked Virtual Environments – design and
implementation”, S. Singhal, M. Zyda)

The cause for inconsistency
network latency (propagation, transmission, routing)
computer system latency (rendering, buffering, etc.)

Dynamic Shared State
- Related Work

• Approaches:
– centralized information repositories (pull/push architectures)
– dead-reckoning algorithms (convergence & prediction)
– frequent state regeneration (blind broadcasts, applications that do

not require absolute consistency)

• Other techniques for resource management:
– Communication protocol optimization (packet compression)
– Visibility of data management (AOI)
– Human perceptual limitations (LOD)
– System Architecture

“Networked Virtual Environments – design and implementation”, S. Singhal, M. Zyda.

Outline
• Distributed Collaborative Environments (DCE)

– Mixed + Virtual Reality (MR/VR), Distributed Systems
– Examples of MR/VR based DCE
– Dynamic Shared State

• Adaptive Scene Synchronization Algorithm
– Drift Value, Drift Matrix
– Fixed vs. Adaptive Threshold
– Quantitative Assessment

• Experimental results
– Scenario one – 2 nodes
– Scenario two – 5 nodes

• Conclusion and future work

Adaptive Scene Synchronization Algorithm

• Motivation
– distributed algorithm for shared state maintenance that

compensates for the network latency

– takes into account the network infrastructure behavior

– provides distributed computation combined with
distributed system monitoring

N1 N2(1)
(2)LAN

Adaptive Scene Synchronization Algorithm
- Overview

• DCE is seen as
– A distributed system of “n” nodes
– Each node:

• runs a set of threads: rendering, interaction, monitoring.
• has access to a local library of 3D models
• data is exchanged through software objects (each shared virtual 3D

object has a software object associated)

• Two types of nodes
– “server” nodes (produce/broadcast interaction data, software objects)
– “client” nodes (consume interaction data, compute delay)

• Each node adjusts the local scene attributes based on
– delay (between each producer and consumer)
– information carried in the software objects (e.g. interaction speed)

Adaptive Scene Synchronization Algorithm
- Drift Value, Drift Matrix

N1 N2Interacts on
shared virtual

object “i”

Renders the
shared virtual

object “i”

• Drift value at (N2) - is the product between the action
velocity and the network delay

• For a DCE of “N” nodes sharing “M” virtual objects
– Velocities matrix, S = [si], where i ∈ [1, Mτ]
– Delays matrix, T = [tj], where j ∈ [1, Nτ]

• Drift matrix
– D(Mτ,Nτ) = STt

Adaptive Scene Synchronization Algorithm
Client side:

Initialization:
Tn ← ComputeNodeDelay()
Sn ← UpdateAction();
Dn ← UpdateDrift()
UpdateLocalScene();

Main:
if (trigger)

Tn ← ComputeNodeDelay()
Dn ← UpdateDrift()

end if
if (changedScene)

Sn← ReceiveChanges()
Dn ← UpdateDrift()

end if
Server side:

for ever listen
if (newClientRequest)

SendToClient(Sn);
end if
if (changedScene)

BroadcastChanges();
end if

end for

Delay Measurements
- Fixed vs. Adaptive Threshold

• When do we trigger the delay computation ?

• Delay measurements must be triggered whenever
significant variations in the network delay appear
– Fixed Threshold – delay measurements are triggered at regular

intervals

– We propose an Adaptive Threshold - delay measurements are
triggered based on the delay history - better characterizes the
network jitter and the users interaction

Delay Measurements
- Adaptive Threshold

• Let:
– Hp the delay history
– σ and hmean be the standard dev. and the mean of Hp
– h0 be the most recent delay, i.e. the last entry in Hp
– γ0 the current frequency of delay measurements,

(expressed as the number of measurements per second)

• Adaptive approach:
– decrease γ0 , if h0∈ [hmean - σ , hmean + σ]
– increase γ0 , if h0∉ [hmean - σ , hmean + σ]

Delay

Time

Sample points

Quantitative Assessment
N1 N2

νE

α
x

y

z

νc

x

y

z

νs
x

y

z

• Assess orientation drift of a shared
3D virtual object

• Let
– qs - rotation of an object at N1
– qc - rotation of the same object at N2

• Correction quaternion (qE) -
expresses the error between the
actual orientation of the object and
the desired orientation

)(cos2 1
E

EEE

cEs

),v (ω q
qqq

ωα −=

=
=

Outline
• Distributed Collaborative Environments (DCE)

– Mixed + Virtual Reality (MR/VR), Distributed Systems
– Examples of MR/VR based DCE

• Dynamic Shared State
– Continuous vs. Discrete Interaction/Updates

• Adaptive Scene Synchronization Algorithm
– Drift Value, Drift Matrix
– Fixed vs. Adaptive Threshold
– Quantitative Assessment

• Experimental results
– Scenario one – 2 nodes
– Scenario two – 5 nodes

• Conclusion and future work

Experimental Results
- Prototype

• Distributed Artificial Reality Environment (DARE)
– set of OO libraries for 3D rendering, communication, node monitoring,

assessment (http://odalab.creol.ucf.edu/dare)

• User interacts through a GUI by applying a set of consecutive actions
(rotations) on the object

N1 N2(1)

(2)LAN

Experimental Results - Scenario 1

(1) N2 computes the
inter-node delay.

(2) N1 broadcasts
updates as the user at
N1 interacts with the
object.

N1 N2(1)

(2)

User at N1 rotates the shared
object around axes with
different velocities (e.g. 10,
50, 100 degrees/second)

Angular Drift at N2, Synch. OFF

0

20

40

60

80

100

120

140

160

180
1 4 7 10 13 16 19 22 25 28 31 34

Action number

D
rif

t (
de

gr
ee

s)

Action velocity = 10 degrees/second
Action velocity = 50 degrees/second
Action velocity = 100 degrees/second

Angular Drift at N2, Synch. ON

0

0.5

1

1.5

2

2.5

3

3.5
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Action number

D
rif

t (
de

gr
ee

s)

Action velocity = 10 degress/second
Action velocity = 50 degrees/second
Action velocity = 100 degrees/second

Comparison Synch. ON/OFF

Drift on N2, action speed 50 degrees/sec

0

20

40

60

80

100

120

140
1 4 7 10 13 16 19 22 25 28 31

Action number

D
rif

t (
de

gr
ee

s)

Sync. OFF
Sync. ON

Experimental Results – Scenario 2
- Investigation of Scalability

(1) node 5 joins and uses the
delay probe to compute the
latency between him and
the server.

(2), (3), (4) Same

(5) The server (N1) broadcasts
data to all participants (as
they join the environment)

N1 N2

N3

N4

N5

(1) (2)

(3)

(4)

(5)

(5)
(5)

(5)

Experimental Results – Scenario 2
- Hardware

Node
no.

Arch CPU (GHz) RAM
(MB)

Video card

1 Desktop 1.5 AMD 1024 4 Ti4600

2 Desktop 1 P3 1024 2 Mx

3 Desktop 1.7 P4 512 4 Mx 440

4 Desktop 1.7 AMD 1024 4 Ti4600

5 Laptop 2 P4 1024 4 Go440

Drift between client nodes and N1 – Synch. OFF

0
10
20
30
40
50
60
70
80
90

1 4 7 10 13 16 19 22 25 28 31

Action number

D
rif

t (
de

gr
ee

s)

Action velocity = 10 degrees/second
Action velocity = 50 degrees/second
Action velocity = 100 degrees/second

Node 2

0

20

40

60

80

100

120

140

160

1 4 7 10 13 16 19 22 25 28 31

Action number

D
rif

t (
de

gr
ee

s)

Node 3

0

20

40

60

80

100

120

140

160

1 4 7 10 13 16 19 22 25 28 31

Action number

D
rif

t (
de

gr
ee

s)

Node 4 Node 5

0
10
20
30
40
50
60
70
80
90

1 4 7 10 13 16 19 22 25 28 31

Action number

D
rif

t (
de

gr
ee

s)

Drift between client nodes and N1 – Synch. ON

0

0.5

1

1.5

2

2.5

3

3.5

1 4 7 10 13 16 19 22 25 28 31

Action number

D
rif

t (
de

gr
ee

s)

Action velocity = 10 degrees/second
Action velocity = 50 degrees/second
Action velocity = 100 degrees/second

Node 2

0

1

2

3

4

5

6

1 4 7 10 13 16 19 22 25 28 31

Action number

D
rif

t (
de

gr
ee

s)

Node 4

0

0.5

1

1.5

2

2.5

3

1 4 7 10 13 16 19 22 25 28 31

Action number

D
rif

t (
de

gr
ee

s)

Node 5

0

0.5

1

1.5

2

2.5

3

3.5

1 4 7 10 13 16 19 22 25 28 31

Action number

D
rif

t (
de

gr
ee

s)

Node 3

Comparison Synch. ON/OFF

Drift on N2 at action velocity 50 degrees/sec

0

5

10

15

20

25

30

35

40

45

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Action number

D
rif

t (
de

gr
ee

s)

Sync. OFF
Sync. ON

Summary of Results

• Maintains a low and constant drift level
– 100 degrees/sec, synch OFF, after 34 actions => σdrift = 22.59
– 100 degrees/sec, synch. ON, after 34 actions => σdrift = 0.48

• Scalability regarding the number of nodes (ψ average drift)

– ψn = n ψ1 linear increase, low scalability
– ψn ≈ ψ1 i.e. good scalability
– experimental results:

• ψ1 = 2.4 (2 nodes setup)
• ψ4 = 2.9 (4 nodes setup) ⇒ ψ4 ≈ ψ1

Conclusions and Future Work

• Distributed algorithm for dynamic shared state maintenance
– takes into account network latency
– reduces intrusiveness through an adaptive threshold
– decentralized delay and drift computation approach

• Extend the system infrastructure to multiple interacting
nodes:

Hamza-Lup, F. J. Rolland, C. Hughes: “Hybrid Nodes with Sensors -
Architecture for Interactive Distributed Mixed and Virtual Reality
Environments” in press, SCI 2004, July 18-21 Orlando Florida.

Continuous vs. Discrete
-Scalability vs. Consistency issues

(+) scalability
(+) consistency

(+) scalability
(-) consistencyDiscrete

(-) scalability
(+) consistency

(-) scalability
(+) consistencyContinuous

DiscreteContinuous
Interaction

Update

	Adaptive Scene Synchronization for Virtual and Mixed Reality Environments
	Outline
	Distributed Collaborative Environments- Examples of MR/VR based DCE & Trend
	Distributed Collaborative Environments - Dynamic Shared State
	Dynamic Shared State- Related Work
	Outline
	Adaptive Scene Synchronization Algorithm
	Adaptive Scene Synchronization Algorithm- Overview
	Adaptive Scene Synchronization Algorithm- Drift Value, Drift Matrix
	Adaptive Scene Synchronization Algorithm
	Delay Measurements- Fixed vs. Adaptive Threshold
	Delay Measurements - Adaptive Threshold
	Quantitative Assessment
	Outline
	Experimental Results - Prototype
	Experimental Results - Scenario 1
	Angular Drift at N2, Synch. OFF
	Angular Drift at N2, Synch. ON
	Comparison Synch. ON/OFF
	Experimental Results – Scenario 2- Investigation of Scalability
	Experimental Results – Scenario 2- Hardware
	Drift between client nodes and N1 – Synch. OFF
	Drift between client nodes and N1 – Synch. ON
	Comparison Synch. ON/OFF
	Summary of Results
	Conclusions and Future Work
	Continuous vs. Discrete-Scalability vs. Consistency issues

