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Rendering large scenes with many complex objects places prohibitive requirements on 
modern graphics hardware.  For example, while methods for rendering near photo-realistic 
vegetation scenes have been described in the literature, they require minutes of computation.  
In this paper we present scene and LOD management techniques for achieving interactive 
frame rates for a forest walk-through.  The proposed framework selects the LOD based on 
object visibility, in addition to the projected size. Run-time visibility computation is used to 
efficiently schedule dynamic scene modification, such as interactive forest growing.  We also 
propose an inertial LOD model to minimize popping artifacts – rather than instantly 
switching the LODs, discrete LODs are smoothly blended over a number of frames.  The 
proposed techniques can be readily adapted for scenes other than forests, providing support 
for simulations involving both static and dynamic environments, whether synthetic natural 
(e.g., dense vegetation) or man-made (e.g., urban landscapes). 
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1. Introduction 

Rendering requirements for walk-throughs of 
large scenes with many complex objects exceed 
the capabilities of even the fastest graphics 
hardware.  Thus, techniques for managing 
scene and object complexity are necessary in 
order to achieve interactive frame rates.  The 
two major contributions of this paper address 
these issues.   

First, we propose an inertial level of detail 
(LOD) model.  The model minimizes popping 
artifacts by linearly interpolating over time 
between discrete LODs whenever a transition is 
necessary.  This technique is relevant to 
objects, such as trees, that are not amenable to 
progressive surface simplification methods 
[[17] chapter 2].  We describe an 

implementation for modern graphics hardware 
that requires two passes for each object in 
transition. 

Second, we propose a visibility-based 
walk-through framework.  The framework 
renders objects in the front-to-back order, each 
time using visibility in addition to the 
traditional projected object size to determine 
the optimal LOD.  Object visibility is computed 
at run-time for each frame and makes use of 
hardware-assisted occlusion queries.  Thus, a 
precomputation step is not necessary and the 
scene can be modified dynamically.  We 
illustrate this by increasing the age for the 
entire forest, while prioritizing tree growth by 
their visibility. 

The tree model is briefly reviewed in 
Section 2.  The inertial LOD model, as well as 
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the underlying discrete and continuous LOD 
models, are described in Section 3.  The 
visibility-based framework is proposed in 
Section 4, which also includes experimental 
timings.  Conclusions and future work are listed 
in Section 5.  The proposed techniques are not 
restricted to rendering forest walk-throuhgs.  
The inertial LOD model is applicable to any 
objects, while visibility-based walk-through 
framework can utilize any LOD model. 

 
2. Tree Model 

While computer modeling and rendering of 
trees and forest scenes has been studied quite 
extensively [[4],[8], 
,[19],[20],[22],[23],[24],[28] and others], little 
research has been published on traversing forest 
scenes at interactive frame rates 
[[9],[21],[15],[20],[25]].  Rendering photo-
realistic forest scenes requires minutes to hours 
of computation per frame.  In order to be useful 
for visual simulation, training, and scientific 
applications, a forest walk-through framework 
may have to satisfy a number of additional 
requirements: 

 
• Each tree should be unique.  Instantiating 

affinely transformed copies of the same 
tree is unacceptable in some applications.  
Of course, to increase performance such 
system can always be scaled down by using 
a only a few unique specimen. 

• The exact same tree must be rendered, 
given the same viewpoint position and 
direction.  Thus, tree structures cannot be 
generated randomly when their positions 
fall within the viewing frustum and 
discarded when they are no longer visible. 

 
To generate trees for the proposed forest walk-
through framework we have modified the 
stochastic L-system 5, described by 
Prusinkiewicz et al. [[24]].  L-systems were 
chosen because they provide a compact 
representation of a tree as well as the methods 
necessary for advanced biological simulation.  
The rules of the system are as follows: 

ω: FA(1) 
p1: A(k) → /(φ)[+(α)FA(k + 1)] – (β)FA(k + 1):  
   min{1, (2k + 1)/k2} 
p2: A(k) → /(φ) – (β)FA(k + 1):  
   max{0, 1 – (2k + 1)/k2} 
 
The initial string is specified by the axiom 

ω, which consists of two modules.  Module F is 

rendered as a branch segment.  Module A() is 
used for “growing” the tree and has no 
graphical interpretation (the integer in the 
parentheses denotes the number of times 
rewriting rules have been applied).  Modules +, 
– denote rotation around the z-axis, while / 
denotes rotation around the y-axis.  The angles 
for the rotations are specified in the parentheses 
(α = 32°, β =20°, ϕ = 90°).  There are two 
possibilities when rewriting module A(k).  
Rewriting (production) rule p1 produces two 
branches with probability min{1, (2k + 1)/k2}, 
while p2 produces a single branch segment.  For 
more details on L-systems and their 
interpretation refer to [[24]]. 

In order to produce models suited for real-
time rendering, our interpretation of the L-
system strings has a number of minor 
differences from that of Prusinkiewicz et al.  
First, the length of a branch segment in the 
modified model is decreased with each 
rewriting step.  Second, leaf clusters are 
rendered as textured cross-polygon impostors.  
A cross-polygon is made up of two 
quadrangles, intersecting along their respective 
center lines.  Leaf clusters are attached to the 
last three levels of the tree, whereas the original 
model due to Prusinkiewicz et al. used only the 
last level.  Furthermore, the color of a leaf 
cluster depends on the branch level: interior 
clusters are darker to approximate light 
occlusion within the tree canopy. 

The L-system description of a tree is stored 
in a singly-linked list, with a list element for 
each module.  Times to render a single tree 
after a varying number of L-system productions 
are listed in Table 1.  Times were averaged 
over 100 randomly generated trees; time to 
clear and swap the buffers is not included (the 
experiments did clear and swap the buffers, but 
the time for these operations was determined 
separately and subtracted).  The numbers of 
branch segments (cylinders) and leaf clusters 
are also listed.  Experiments were conducted on 
a PC equipped with a 2.4GHz Xeon processor, 
512MB RAM, and an nv35 (GeForce fx5900) 
graphics card.  The application was written in 
ANSI C++ using OpenGL 1.5.  Textures for 
leaf clusters were mipmapped 512x512 RGBA 
images. 

n. prod n. cyls n. leaves time (ms) FPS
4 15 14 0.44 2288.33
8 170 139 0.83 1207.73

12 706 443 2.93 341.56
16 1979 1016 6.72 148.83
20 4595 1933 13.92 71.83  
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Table 1.  Time required to render a single 
tree generated after different number 
productions 

The trees for the walk-through were 
produced by 12 productions of the modified L-
system.  Branch structure as well as foliated 
trees, produced after 6, 8, and 12 productions, 
are shown in Figures 1 and 2, respectively. 

 
Figure 1. Branch structures: 6, 8, and 12 

productions 

 
Figure 2. Foliated structure: 6, 8, and 12 
productions 

 
3. Hierarchical Level of Detail 

A simplifying assumption is made that a tree 
consists of branch segments and leaf clusters.  
The level of a branch segment is the production 
in which the corresponding module was added.  
Any level-k branch segment is connected to a 
single level-(k – 1) segment, or parent, and may 
have multiple children, or level-(k + 1) 
segments connected to it.  We say that a tree is 
rooted at the level-0 branch segment, which by 
construction does not have a parent.  Given any 
branch segment we define the subtree to be the 
set of all successor segments and associated 
leaf clusters.  A k-subtree is a subtree rooted at 
a level-k branch segment. 
 
3.1. Discrete LOD Model 

We propose a hierarchical scheme for 
computing tree levels of detail, similar to 
Max’s approach [[19]]. Human perception 
experiments [[26],[27]] suggest that the 
structure of lower level branches is critical to 
memorization and recognition.  Thus, in the kth 
level of detail, LOD-k, replaces each k-subtree 
with a textured cross-polygon impostor.  Each 

instance of the impostor is transformed in 3D 
space just as the k-subtree it approximates.  
Two sample LODs are shown in Figure 3, 
outlining the boundaries of the textured cross-
polygon impostors.  The lowest level of detail, 
LOD-0 replaces the entire tree with a single 
cross-polygon.   

The LOD-k textures are rendered from 
several views of an arbitrary k-subtree.  In our 
implementation two texture maps are generated 
from two perpendicular views of the subtree.  
Each texture map is a 256x256 image, scaled 
appropriately at run-time by the graphics 
hardware.  The same set of textures is used for 
all trees of the same species.    Since the 
silhouette of a subtree is the same from any two 
views at an angle of 180° to each other, we 
used the same texture for both sides of a 
quadrangle.  While these simplifications 
provide only a rough approximation of the fully 
detailed object, we observed minimal 
discrepancies due to occlusion and distance to 
objects rendered at lower levels of detail. 

 
Figure 3: Cross-polygons for LOD-0 and 
LOD-1 

Four sample levels of detail for a 12-level 
tree are shown in Figure 4, LOD-0 and LOD-12 
being the lowest and the highest level of detail, 
respectively.  Each LOD was rendered at the 
same angle and distance from the viewer.  Note 
that the trunk of LOD-0 appears thinner 
because both polygons in the impostor are at a 
45° angle to the viewer.  Orientation of 
individual impostors is less significant for 
higher levels of detail. 
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Figure 4: Four levels of detail for a 12-

production tree 
Times to render a single tree at varying 

levels of detail are listed in Table 2.  The times 
were averaged over 100 randomly generated 
trees. 

LOD time (ms) FPS speedup
0 0.54 1840.43 5.39
4 0.89 1122.59 3.29
8 1.41 708.04 2.07

12 2.93 341.56 1.00  
Table 2:  Time to render a single 12-production 
tree at different levels of detail 

 

3.2. Continuous LOD Model 

To reduce the popping artifacts when switching 
between discrete LODs, we extend the discrete 
model to a continuous one.  The continuous 
model renders two LODs, linearly interpolating 
their translucencies.  Due to the hierarchical 
nature of the LOD model both LODs share 
branch segments: the higher LOD needs to be 
fully rendered, but only the impostor cross-
polygons need to be drawn for the lower LOD.  
Thus, the polygon count is only slightly higher 
than that of the higher LOD alone. 

Implementation of the continuous LOD 
model currently requires two rendering passes 
since blending two objects often results in an 
image that is darker than a rendering of a single 
opaque object [[15]].  Assuming the 
EXT_blend_func_separate OpenGL extension, 
the following states are enabled when objects 
are rendered in the front-to-back order (the 
framebuffer is initially set to (0, 0, 0, 0) color): 

 

Function Mask Comp. Source Destination
RGB SRC_ALPHA ZERO
Alpha ONE ZERO
RGB SRC_ALPHA_SATURATE ONE
Alpha ONE ONE

1st LEQUAL TRUE

2nd GREATER FALSE

DepthPass Alpha blending

 
 
Note that the back-to-front ordering is less 

likely to produce correct results than front-to-
back order: the first pass combines the source 
fragment with the result of all the fragments 
previously rendered to that location.  Thus, it 
very unlikely that a fragment rendered in the 
second pass is properly “inserted” as its opacity 
should depend only on the opacity of the 
corresponding fragment rendered in the first 
pass.  This problem is greatly reduced (if not 
avoided altogether) by rendering the objects in 
a loose front-to-back order. In our experiments, 
two-pass rendering resulted in between 60% 
and 70% increase in rendering time.  If the 
hardware were capable of selecting a blending 
function based on the outcome of the depth test, 
only a single pass would be required.  A multi-
pass technique for order-independent rendering 
of transparent objects is described in [[10]]. 

  
Figure 5: Continuous LOD 

The results for the LOD-5 and LOD-9 are 
shown in Figure 5.  The two-pass approach 
results in correct brightness and avoids dark 
spots, which are unavoidable with a single pass 
due to the depth test. 
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3.2. Inertial LOD Model 

While the continuous LOD model nearly 
eliminates popping artifacts when visibility of 
an object changes smoothly, popping still 
occurs when visibility changes abruptly.  For 
example, visibility can drastically change when 
a viewer emerges from inside a tree canopy.  In 
such case it is possible that the current frame is 
blending discrete LOD-a with LOD-b, whereas 
the previous frame required blending LOD-c 
and LOD-d (where a, b, c, d are all distinct).  
To mitigate popping effects in such cases, we 
propose the Inertial LOD model.   

Whenever a change in detail is needed, the 
inertial LOD model interpolates the blend 
factor of the continuous LOD over a number of 
frames (even if the visibility does not change 
during those frames).  Thus, two LODs are 
maintained: past and target.  Once the 
transition is complete only the discrete target 
LOD is rendered, avoiding the two-pass 
overhead inherent in the continuous model.  
The target LOD may need to be updated while 
the transition is in progress.  Let a and b be the 
past and target LODs, respectively, and a < b.  
If the new target LOD c is less than a, then b 
becomes the past LOD.  Otherwise a remains 
the past LOD.  The case where a > b is 
processed similarly.  The blend factor has to be 
adjusted considering its current value (as 
opposed to resetting it) so as to avoid abrupt 
changes in the past LOD. 

 
4. Visibility-based Walk-through 

Framework 

Walk-through applications are fundamentally 
different from fly-overs [[7],[21]]. and require 
different LOD management approaches.  The 
walk-through viewer is arbitrarily close to some 
objects, which need to be rendered at the 
highest level of detail in order for the smallest 
elements to be distinguishable.  We propose a 
visibility-based LOD management framework.   

A large body of research exists for 
visibility-based object culling [[5]].  The 
methods fall into two general categories: object 
and image based.  Object-based methods clip 
and cull primitives against a set of pre-selected 
objects or occluders [[6],[16]] and culling takes 
place before any rendering.  Some examples of 
object-based methods include Prioritized-
Layered Projection algorithms [[16]], Binary 

Space Partition algorithms, and algorithms 
using shadow frusta [[14]].  Object-based 
algorithms perform best in the presence of a 
small number of portals or large occluders, 
which makes them unsuitable for a forest walk-
through since the objects making up trees 
(branch segments and leaf clusters) are many 
and tend to be relatively small.  Image-based 
visibility methods cull in window coordinates, 
thus rendering is required.  The z-buffer 
algorithm is the most common example of 
image-based culling.  In order to cull primitives 
or even objects, depth tests are performed on 
the projections of the bounding boxes.  
Computation is accelerated by hierarchical 
methods, such as Hierarchical Z-Buffer [[11]] 
and Hierarchical Occlusion Buffer [[29]].  
Related methods were proposed by Bartz et al. 
[[2],[3]] and Hey et al. [[12],[13]].   

While the above methods were designed to 
cull polygons, we adopt a similar approach to 
select levels of detail.  We propose an image-
based level of detail selection method for 
rendering large scenes at interactive frame 
rates.  Given an object, the appropriate level of 
detail is chosen at run-time and is based on 
visibility and projected size.  The objects within 
the frustum are rendered in the front-to-back 
order, which enables interactive visibility 
computation.  Furthermore, this approach does 
not require a costly pre-computation step. 

 

 
Figure 6: Terrain grid and view frustum 

To facilitate front-to-back sorting from any 
viewing position, the terrain is divided into a 
two-dimensional rectangular grid and objects 
are distributed among the grid cells. The system 
could readily be extended to employ a quad-
tree, which would improve performance for 
non-uniform distributions.  Snapshots of the 
grid, the viewpoint and viewing frustum are 
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shown in Figure 6.  The light blue grid cell 
contains the viewpoint and non-white grid cells 
are either intersected or contained by the 
viewing frustum.  There are 8D cells at distance 
D from the viewpoint, where distance is the 
radius of a "square" circle.  A radial coordinate 
system is utilized to traverse only the cells 
within the view frustum for each distance.  
Care must be taken when computing the 
boundary cells: the viewing direction is the 
same in Figures 6b and 6c but the left-most 
cells are two indices apart due to different 
viewing positions. 

 
 Visibility Computation 

A number of graphics cards implement 
occlusion queries [[2],[3]] which given some 
primitives determine how many resulting 
fragments would pass the depth/stencil test 
without actually modifying the render target.  
The visibility of a given object can be 
computed by issuing two queries with different 
depth functions: one that passes the fragments 
that are “in front” of the current z-buffer, the 
other passes the fragments that are behind.  The 
sum of the queries’ results approximates the 
projected size of an object after clipping.  It is 
an approximation since some pixels are counted 
twice due to self-occlusion within an object.  
For example, when rendering the full level of 
detail of a 12-production tree, an average of 
2.21 fragments (the maximum was 11) were 
written to each pixel position that was 
modified.  In practice, the lowest LOD of an 
object is be used to approximate visibility. 

 

 
Figure 7: Contribution of the trees in grid 
cells distance 5 through 10 away from the 
viewpoint 
 

Contribution to the final image by the 
objects (in this case trees) in grid cells between 
distances 5 and 10 (inclusively) from the 
viewer are shown as non-white pixels in Figure 
10.  Since it is difficult to distinguish the 
features of individual objects (trees in this 
case), lower LODs could be used to increase 
performance.  Furthermore, the most prominent 
features the lower-level branches, justifying the 

hierarchical LOD model.  The following 
framework utilizes OpenGL occlusion query 
extension to select LODs at run-time: 

 
1. Render the objects in the viewpoint cell and all cells at 

distance 1 at the highest level of detail. 
2. While the highest LOD in the previous step is greater 

than LOD-THRESHOLD do 
  For each cell at distance d within the frustum do 
   For each object in the current cell do 
    Compute visibility 
    Select LOD 
    Render the chosen LOD 
 

The while loop in step 2 iterates as long as 
the highest level of detail selected in the 
previous step is above a user-specified 
threshold, LOD-THRESHOLD. 

 
 Experimental Results 

The testing hardware and software are 
described in Section 2 above.  The results were 
averaged over 200 consecutive frames of 
circular movement through forest scenes, 
starting at the center.  Scenes were rendered at 
800x600 resolution.  Four levels of detail were 
selected based on visibility and projected size 
(in pixels): 

LOD-12.  Visibility: 55% to 100% and size >10K. 
LOD-8.  Visibility: 20% to 55% and size > 10K. 
LOD-4.  Visibility: 10% to 20% or 1K < size <10K. 
LOD-0.  Visibility: 3% to 10% or 50 < size < 1000. 
no rendering for under 3% visibility or size < 50. 
 

The framework rendered each frame until all 
trees in the previous iteration of the while loop 
were rejected (visibility lower than 3% or fewer 
than 50 fragments contributed).  On average, 
trees up to distance 12 were rendered in our 
experiments.  The same 400-tree forest scene is 
shown in Figures 8 through 10.  Each tree is 
rendered in full level of detail in Figure 8, 
while the proposed framework was utilized to 
render Figures 9 and 10.  In Figure 10, LOD-0 
trees are colored blue, LOD-4 trees are colored 
bright green, LOD-9 trees are colored gold, 
while LOD-12 trees are textured without any 
additional coloring. 
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Figure 8: A forest scene at full level of 
detail 

 
Figure 9: A forest scene using the 
proposed framework 

 
Figure 10: A forest scene showing levels of 
detail 
 

Using the framework with inertial LOD 
model on forests with 100, 400, 1600, and 2500 
distinct trees, respective speedups of 1.9, 4, 
13.7, and 20.9 were achieved when compared 
to the view-frustum culling alone.  The inertial 
LOD model was set to complete the transition 
between discrete LODs in 10 frames.  Average 
frame rates for view-frustum culling only, 
discrete LOD, continuous LOD, and inertial 

LOD are summarized in Table 3.  Note that 
even though discrete LOD results in the highest 
performance, in practice it exhibits the most 
evident popping artifacts.   

 
 

Number
of trees cull disc. cont. inert.

100 10.36 25.29 14.73 19.35
400 3.09 17.65 8.89 12.47

1600 0.82 16.93 9.56 11.27
2500 0.52 15.67 7.23 10.9

Average FPS

 
Table 3: Walk-through performance 

 

In addition to LOD selection, visibility 
information can be used to efficiently schedule 
dynamic scene modification.  We added forest 
growing into the walk-through application, 
allowing the user to adjust the number of 
productions applied to all trees at run-time.  In 
order to grow a tree by one production, a new 
linked-list is created by scanning through the 
existing modules and applying the rewriting 
rules to A modules.  The number of modules is 
exponential in the number of production rules 
applied, making forest growing a time-intensive 
task.  Rather updating all the trees in the scene 
first before rendering the next frame, the 
proposed framework grows each tree (if 
necessary) only after its visibility is 
determined.  If visibility is below 55%, the tree 
is grown by one production per frame until the 
desired age is reached.  If visibility is above 
55%, the tree is grown to the desired age in one 
frame.  Experiments were conducted by 
growing a 12-production forest to either 15 or 
18 productions.  Framerate was averaged over 
200 frames of circular motion immediately 
after the user chose to increase the age.  Table 4 
lists the framerates and total times (in seconds) 
for traversals of forests being grown to age 15.  
Framerate was measured for traversal while the 
forest was being grown.  Timing was repeated 
over the same path after the trees have reached 
the desired age.  The right-most column lists 
the times required to grow all 400 (or 1600) 
trees to 15 productions without any rendering.  
Table 5 lists same measurements for growing 
forests from 12 to 18 productions.  All 
traversals use the inertial LOD model.  Note 
that times to grow the entire scene dramatically 
exceed the total times for 200 frames of 
combined traversal and growing.  Thus, 
visibility-based dynamic scene-modification 
results in substantial time savings. 
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Num. Grow
trees FPS time FPS time time

400 6.80 29.42 8.59 23.30 45.11
1600 2.92 68.56 6.08 32.89 654.66

Traverse and grow Grow then traverse

 
Table 4: Forests grown from 12 to 15 
productions 
 

Num. Grow
trees FPS time FPS time time

400 5.07 39.48 6.94 28.81 154.47
1600 1.73 115.95 4.08 49.08 2255.05

Traverse and grow Grow then traverse

 
Table 5: Forests grown from 12 to 15 
productions 

 
5. Discussion and Future Work 

An inertial LOD model as well as a visibility-
based walk-through framework were proposed 
in this paper.  Inertial LOD model can be used 
to minimize popping artifacts when switching 
between discrete LODs.  This is critical for 
objects, such as trees, that are not amenable to 
progressive surface-simplification methods.  
Forest walk-through was used as a sample 
application, with the proposed framework 
achieving speedup up to 20 over view frustum 
culling alone.  Furthermore, the proposed 
framework used visibility information to 
dynamically grow the forest at run-time, 
dramatically increasing performance when 
compared to the naïve approach of growing the 
entire forest first.  A two-pass hardware-
efficient implementation of the hierarchical 
LOD model was described.  This technique 
would require only a single pass (implying a 
40% increase in performance) if graphics 
hardware allowed choosing the blending 
function based on the outcome of the depth test.   

An interesting direction for future work is 
to extend the visibility computation to consider 
object fragmentation in the final image.  
Consider two equally sized instances of the 
same object that is 50% visible.  The instance 
which is visible as one contiguous block of 
pixels may need a higher LOD than the one that 
is visible as a collection of small disjoint 
blocks.  Such LOD-selection technique would 
require fast reading of the framebuffer as well 
as efficient image processing techniques. 
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