

Visibility-based Forest Walk-through
Using Inertial LOD Model

Paulius Micikevicius
School of Computing
Armstrong Atlantic State University
Savannah, Georgia
paulius@cs.armstrong.edu

Charles E. Hughes
School of Computer Science
University of Central Florida
Orlando, Florida
ceh@cs.ucf.edu

Rendering large scenes with many complex objects places prohibitive requirements on
modern graphics hardware. For example, while methods for rendering near photo-realistic
vegetation scenes have been described in the literature, they require minutes of computation.
In this paper we present scene and LOD management techniques for achieving interactive
frame rates for a forest walk-through. The proposed framework selects the LOD based on
object visibility, in addition to the projected size. Run-time visibility computation is used to
efficiently schedule dynamic scene modification, such as interactive forest growing. We also
propose an inertial LOD model to minimize popping artifacts – rather than instantly
switching the LODs, discrete LODs are smoothly blended over a number of frames. The
proposed techniques can be readily adapted for scenes other than forests, providing support
for simulations involving both static and dynamic environments, whether synthetic natural
(e.g., dense vegetation) or man-made (e.g., urban landscapes).

Keywords:
Level-of-detail, visibility, occlusion, walk-through.

1. Introduction

Rendering requirements for walk-throughs of
large scenes with many complex objects exceed
the capabilities of even the fastest graphics
hardware. Thus, techniques for managing
scene and object complexity are necessary in
order to achieve interactive frame rates. The
two major contributions of this paper address
these issues.

First, we propose an inertial level of detail
(LOD) model. The model minimizes popping
artifacts by linearly interpolating over time
between discrete LODs whenever a transition is
necessary. This technique is relevant to
objects, such as trees, that are not amenable to
progressive surface simplification methods
[[17] chapter 2]. We describe an

implementation for modern graphics hardware
that requires two passes for each object in
transition.

Second, we propose a visibility-based
walk-through framework. The framework
renders objects in the front-to-back order, each
time using visibility in addition to the
traditional projected object size to determine
the optimal LOD. Object visibility is computed
at run-time for each frame and makes use of
hardware-assisted occlusion queries. Thus, a
precomputation step is not necessary and the
scene can be modified dynamically. We
illustrate this by increasing the age for the
entire forest, while prioritizing tree growth by
their visibility.

The tree model is briefly reviewed in
Section 2. The inertial LOD model, as well as

 Micikevicius and Hughes

the underlying discrete and continuous LOD
models, are described in Section 3. The
visibility-based framework is proposed in
Section 4, which also includes experimental
timings. Conclusions and future work are listed
in Section 5. The proposed techniques are not
restricted to rendering forest walk-throuhgs.
The inertial LOD model is applicable to any
objects, while visibility-based walk-through
framework can utilize any LOD model.

2. Tree Model

While computer modeling and rendering of
trees and forest scenes has been studied quite
extensively [[4],[8],
,[19],[20],[22],[23],[24],[28] and others], little
research has been published on traversing forest
scenes at interactive frame rates
[[9],[21],[15],[20],[25]]. Rendering photo-
realistic forest scenes requires minutes to hours
of computation per frame. In order to be useful
for visual simulation, training, and scientific
applications, a forest walk-through framework
may have to satisfy a number of additional
requirements:

• Each tree should be unique. Instantiating

affinely transformed copies of the same
tree is unacceptable in some applications.
Of course, to increase performance such
system can always be scaled down by using
a only a few unique specimen.

• The exact same tree must be rendered,
given the same viewpoint position and
direction. Thus, tree structures cannot be
generated randomly when their positions
fall within the viewing frustum and
discarded when they are no longer visible.

To generate trees for the proposed forest walk-
through framework we have modified the
stochastic L-system 5, described by
Prusinkiewicz et al. [[24]]. L-systems were
chosen because they provide a compact
representation of a tree as well as the methods
necessary for advanced biological simulation.
The rules of the system are as follows:

ω: FA(1)
p1: A(k) → /(φ)[+(α)FA(k + 1)] – (β)FA(k + 1):
 min{1, (2k + 1)/k2}
p2: A(k) → /(φ) – (β)FA(k + 1):
 max{0, 1 – (2k + 1)/k2}

The initial string is specified by the axiom

ω, which consists of two modules. Module F is

rendered as a branch segment. Module A() is
used for “growing” the tree and has no
graphical interpretation (the integer in the
parentheses denotes the number of times
rewriting rules have been applied). Modules +,
– denote rotation around the z-axis, while /
denotes rotation around the y-axis. The angles
for the rotations are specified in the parentheses
(α = 32°, β =20°, ϕ = 90°). There are two
possibilities when rewriting module A(k).
Rewriting (production) rule p1 produces two
branches with probability min{1, (2k + 1)/k2},
while p2 produces a single branch segment. For
more details on L-systems and their
interpretation refer to [[24]].

In order to produce models suited for real-
time rendering, our interpretation of the L-
system strings has a number of minor
differences from that of Prusinkiewicz et al.
First, the length of a branch segment in the
modified model is decreased with each
rewriting step. Second, leaf clusters are
rendered as textured cross-polygon impostors.
A cross-polygon is made up of two
quadrangles, intersecting along their respective
center lines. Leaf clusters are attached to the
last three levels of the tree, whereas the original
model due to Prusinkiewicz et al. used only the
last level. Furthermore, the color of a leaf
cluster depends on the branch level: interior
clusters are darker to approximate light
occlusion within the tree canopy.

The L-system description of a tree is stored
in a singly-linked list, with a list element for
each module. Times to render a single tree
after a varying number of L-system productions
are listed in Table 1. Times were averaged
over 100 randomly generated trees; time to
clear and swap the buffers is not included (the
experiments did clear and swap the buffers, but
the time for these operations was determined
separately and subtracted). The numbers of
branch segments (cylinders) and leaf clusters
are also listed. Experiments were conducted on
a PC equipped with a 2.4GHz Xeon processor,
512MB RAM, and an nv35 (GeForce fx5900)
graphics card. The application was written in
ANSI C++ using OpenGL 1.5. Textures for
leaf clusters were mipmapped 512x512 RGBA
images.

n. prod n. cyls n. leaves time (ms) FPS
4 15 14 0.44 2288.33
8 170 139 0.83 1207.73

12 706 443 2.93 341.56
16 1979 1016 6.72 148.83
20 4595 1933 13.92 71.83

 Visibility-based Walk-through Framework Using Inertial LOD Model

Table 1. Time required to render a single
tree generated after different number
productions

The trees for the walk-through were
produced by 12 productions of the modified L-
system. Branch structure as well as foliated
trees, produced after 6, 8, and 12 productions,
are shown in Figures 1 and 2, respectively.

Figure 1. Branch structures: 6, 8, and 12

productions

Figure 2. Foliated structure: 6, 8, and 12
productions

3. Hierarchical Level of Detail

A simplifying assumption is made that a tree
consists of branch segments and leaf clusters.
The level of a branch segment is the production
in which the corresponding module was added.
Any level-k branch segment is connected to a
single level-(k – 1) segment, or parent, and may
have multiple children, or level-(k + 1)
segments connected to it. We say that a tree is
rooted at the level-0 branch segment, which by
construction does not have a parent. Given any
branch segment we define the subtree to be the
set of all successor segments and associated
leaf clusters. A k-subtree is a subtree rooted at
a level-k branch segment.

3.1. Discrete LOD Model

We propose a hierarchical scheme for
computing tree levels of detail, similar to
Max’s approach [[19]]. Human perception
experiments [[26],[27]] suggest that the
structure of lower level branches is critical to
memorization and recognition. Thus, in the kth
level of detail, LOD-k, replaces each k-subtree
with a textured cross-polygon impostor. Each

instance of the impostor is transformed in 3D
space just as the k-subtree it approximates.
Two sample LODs are shown in Figure 3,
outlining the boundaries of the textured cross-
polygon impostors. The lowest level of detail,
LOD-0 replaces the entire tree with a single
cross-polygon.

The LOD-k textures are rendered from
several views of an arbitrary k-subtree. In our
implementation two texture maps are generated
from two perpendicular views of the subtree.
Each texture map is a 256x256 image, scaled
appropriately at run-time by the graphics
hardware. The same set of textures is used for
all trees of the same species. Since the
silhouette of a subtree is the same from any two
views at an angle of 180° to each other, we
used the same texture for both sides of a
quadrangle. While these simplifications
provide only a rough approximation of the fully
detailed object, we observed minimal
discrepancies due to occlusion and distance to
objects rendered at lower levels of detail.

Figure 3: Cross-polygons for LOD-0 and
LOD-1

Four sample levels of detail for a 12-level
tree are shown in Figure 4, LOD-0 and LOD-12
being the lowest and the highest level of detail,
respectively. Each LOD was rendered at the
same angle and distance from the viewer. Note
that the trunk of LOD-0 appears thinner
because both polygons in the impostor are at a
45° angle to the viewer. Orientation of
individual impostors is less significant for
higher levels of detail.

 Micikevicius and Hughes

Figure 4: Four levels of detail for a 12-

production tree
Times to render a single tree at varying

levels of detail are listed in Table 2. The times
were averaged over 100 randomly generated
trees.

LOD time (ms) FPS speedup
0 0.54 1840.43 5.39
4 0.89 1122.59 3.29
8 1.41 708.04 2.07

12 2.93 341.56 1.00
Table 2: Time to render a single 12-production
tree at different levels of detail

3.2. Continuous LOD Model

To reduce the popping artifacts when switching
between discrete LODs, we extend the discrete
model to a continuous one. The continuous
model renders two LODs, linearly interpolating
their translucencies. Due to the hierarchical
nature of the LOD model both LODs share
branch segments: the higher LOD needs to be
fully rendered, but only the impostor cross-
polygons need to be drawn for the lower LOD.
Thus, the polygon count is only slightly higher
than that of the higher LOD alone.

Implementation of the continuous LOD
model currently requires two rendering passes
since blending two objects often results in an
image that is darker than a rendering of a single
opaque object [[15]]. Assuming the
EXT_blend_func_separate OpenGL extension,
the following states are enabled when objects
are rendered in the front-to-back order (the
framebuffer is initially set to (0, 0, 0, 0) color):

Function Mask Comp. Source Destination
RGB SRC_ALPHA ZERO
Alpha ONE ZERO
RGB SRC_ALPHA_SATURATE ONE
Alpha ONE ONE

1st LEQUAL TRUE

2nd GREATER FALSE

DepthPass Alpha blending

Note that the back-to-front ordering is less

likely to produce correct results than front-to-
back order: the first pass combines the source
fragment with the result of all the fragments
previously rendered to that location. Thus, it
very unlikely that a fragment rendered in the
second pass is properly “inserted” as its opacity
should depend only on the opacity of the
corresponding fragment rendered in the first
pass. This problem is greatly reduced (if not
avoided altogether) by rendering the objects in
a loose front-to-back order. In our experiments,
two-pass rendering resulted in between 60%
and 70% increase in rendering time. If the
hardware were capable of selecting a blending
function based on the outcome of the depth test,
only a single pass would be required. A multi-
pass technique for order-independent rendering
of transparent objects is described in [[10]].

Figure 5: Continuous LOD

The results for the LOD-5 and LOD-9 are
shown in Figure 5. The two-pass approach
results in correct brightness and avoids dark
spots, which are unavoidable with a single pass
due to the depth test.

 Visibility-based Walk-through Framework Using Inertial LOD Model

3.2. Inertial LOD Model

While the continuous LOD model nearly
eliminates popping artifacts when visibility of
an object changes smoothly, popping still
occurs when visibility changes abruptly. For
example, visibility can drastically change when
a viewer emerges from inside a tree canopy. In
such case it is possible that the current frame is
blending discrete LOD-a with LOD-b, whereas
the previous frame required blending LOD-c
and LOD-d (where a, b, c, d are all distinct).
To mitigate popping effects in such cases, we
propose the Inertial LOD model.

Whenever a change in detail is needed, the
inertial LOD model interpolates the blend
factor of the continuous LOD over a number of
frames (even if the visibility does not change
during those frames). Thus, two LODs are
maintained: past and target. Once the
transition is complete only the discrete target
LOD is rendered, avoiding the two-pass
overhead inherent in the continuous model.
The target LOD may need to be updated while
the transition is in progress. Let a and b be the
past and target LODs, respectively, and a < b.
If the new target LOD c is less than a, then b
becomes the past LOD. Otherwise a remains
the past LOD. The case where a > b is
processed similarly. The blend factor has to be
adjusted considering its current value (as
opposed to resetting it) so as to avoid abrupt
changes in the past LOD.

4. Visibility-based Walk-through

Framework

Walk-through applications are fundamentally
different from fly-overs [[7],[21]]. and require
different LOD management approaches. The
walk-through viewer is arbitrarily close to some
objects, which need to be rendered at the
highest level of detail in order for the smallest
elements to be distinguishable. We propose a
visibility-based LOD management framework.

A large body of research exists for
visibility-based object culling [[5]]. The
methods fall into two general categories: object
and image based. Object-based methods clip
and cull primitives against a set of pre-selected
objects or occluders [[6],[16]] and culling takes
place before any rendering. Some examples of
object-based methods include Prioritized-
Layered Projection algorithms [[16]], Binary

Space Partition algorithms, and algorithms
using shadow frusta [[14]]. Object-based
algorithms perform best in the presence of a
small number of portals or large occluders,
which makes them unsuitable for a forest walk-
through since the objects making up trees
(branch segments and leaf clusters) are many
and tend to be relatively small. Image-based
visibility methods cull in window coordinates,
thus rendering is required. The z-buffer
algorithm is the most common example of
image-based culling. In order to cull primitives
or even objects, depth tests are performed on
the projections of the bounding boxes.
Computation is accelerated by hierarchical
methods, such as Hierarchical Z-Buffer [[11]]
and Hierarchical Occlusion Buffer [[29]].
Related methods were proposed by Bartz et al.
[[2],[3]] and Hey et al. [[12],[13]].

While the above methods were designed to
cull polygons, we adopt a similar approach to
select levels of detail. We propose an image-
based level of detail selection method for
rendering large scenes at interactive frame
rates. Given an object, the appropriate level of
detail is chosen at run-time and is based on
visibility and projected size. The objects within
the frustum are rendered in the front-to-back
order, which enables interactive visibility
computation. Furthermore, this approach does
not require a costly pre-computation step.

Figure 6: Terrain grid and view frustum

To facilitate front-to-back sorting from any
viewing position, the terrain is divided into a
two-dimensional rectangular grid and objects
are distributed among the grid cells. The system
could readily be extended to employ a quad-
tree, which would improve performance for
non-uniform distributions. Snapshots of the
grid, the viewpoint and viewing frustum are

 Micikevicius and Hughes

shown in Figure 6. The light blue grid cell
contains the viewpoint and non-white grid cells
are either intersected or contained by the
viewing frustum. There are 8D cells at distance
D from the viewpoint, where distance is the
radius of a "square" circle. A radial coordinate
system is utilized to traverse only the cells
within the view frustum for each distance.
Care must be taken when computing the
boundary cells: the viewing direction is the
same in Figures 6b and 6c but the left-most
cells are two indices apart due to different
viewing positions.

 Visibility Computation

A number of graphics cards implement
occlusion queries [[2],[3]] which given some
primitives determine how many resulting
fragments would pass the depth/stencil test
without actually modifying the render target.
The visibility of a given object can be
computed by issuing two queries with different
depth functions: one that passes the fragments
that are “in front” of the current z-buffer, the
other passes the fragments that are behind. The
sum of the queries’ results approximates the
projected size of an object after clipping. It is
an approximation since some pixels are counted
twice due to self-occlusion within an object.
For example, when rendering the full level of
detail of a 12-production tree, an average of
2.21 fragments (the maximum was 11) were
written to each pixel position that was
modified. In practice, the lowest LOD of an
object is be used to approximate visibility.

Figure 7: Contribution of the trees in grid
cells distance 5 through 10 away from the
viewpoint

Contribution to the final image by the
objects (in this case trees) in grid cells between
distances 5 and 10 (inclusively) from the
viewer are shown as non-white pixels in Figure
10. Since it is difficult to distinguish the
features of individual objects (trees in this
case), lower LODs could be used to increase
performance. Furthermore, the most prominent
features the lower-level branches, justifying the

hierarchical LOD model. The following
framework utilizes OpenGL occlusion query
extension to select LODs at run-time:

1. Render the objects in the viewpoint cell and all cells at

distance 1 at the highest level of detail.
2. While the highest LOD in the previous step is greater

than LOD-THRESHOLD do
 For each cell at distance d within the frustum do
 For each object in the current cell do
 Compute visibility
 Select LOD
 Render the chosen LOD

The while loop in step 2 iterates as long as
the highest level of detail selected in the
previous step is above a user-specified
threshold, LOD-THRESHOLD.

 Experimental Results

The testing hardware and software are
described in Section 2 above. The results were
averaged over 200 consecutive frames of
circular movement through forest scenes,
starting at the center. Scenes were rendered at
800x600 resolution. Four levels of detail were
selected based on visibility and projected size
(in pixels):

LOD-12. Visibility: 55% to 100% and size >10K.
LOD-8. Visibility: 20% to 55% and size > 10K.
LOD-4. Visibility: 10% to 20% or 1K < size <10K.
LOD-0. Visibility: 3% to 10% or 50 < size < 1000.
no rendering for under 3% visibility or size < 50.

The framework rendered each frame until all
trees in the previous iteration of the while loop
were rejected (visibility lower than 3% or fewer
than 50 fragments contributed). On average,
trees up to distance 12 were rendered in our
experiments. The same 400-tree forest scene is
shown in Figures 8 through 10. Each tree is
rendered in full level of detail in Figure 8,
while the proposed framework was utilized to
render Figures 9 and 10. In Figure 10, LOD-0
trees are colored blue, LOD-4 trees are colored
bright green, LOD-9 trees are colored gold,
while LOD-12 trees are textured without any
additional coloring.

 Visibility-based Walk-through Framework Using Inertial LOD Model

Figure 8: A forest scene at full level of
detail

Figure 9: A forest scene using the
proposed framework

Figure 10: A forest scene showing levels of
detail

Using the framework with inertial LOD
model on forests with 100, 400, 1600, and 2500
distinct trees, respective speedups of 1.9, 4,
13.7, and 20.9 were achieved when compared
to the view-frustum culling alone. The inertial
LOD model was set to complete the transition
between discrete LODs in 10 frames. Average
frame rates for view-frustum culling only,
discrete LOD, continuous LOD, and inertial

LOD are summarized in Table 3. Note that
even though discrete LOD results in the highest
performance, in practice it exhibits the most
evident popping artifacts.

Number
of trees cull disc. cont. inert.

100 10.36 25.29 14.73 19.35
400 3.09 17.65 8.89 12.47

1600 0.82 16.93 9.56 11.27
2500 0.52 15.67 7.23 10.9

Average FPS

Table 3: Walk-through performance

In addition to LOD selection, visibility
information can be used to efficiently schedule
dynamic scene modification. We added forest
growing into the walk-through application,
allowing the user to adjust the number of
productions applied to all trees at run-time. In
order to grow a tree by one production, a new
linked-list is created by scanning through the
existing modules and applying the rewriting
rules to A modules. The number of modules is
exponential in the number of production rules
applied, making forest growing a time-intensive
task. Rather updating all the trees in the scene
first before rendering the next frame, the
proposed framework grows each tree (if
necessary) only after its visibility is
determined. If visibility is below 55%, the tree
is grown by one production per frame until the
desired age is reached. If visibility is above
55%, the tree is grown to the desired age in one
frame. Experiments were conducted by
growing a 12-production forest to either 15 or
18 productions. Framerate was averaged over
200 frames of circular motion immediately
after the user chose to increase the age. Table 4
lists the framerates and total times (in seconds)
for traversals of forests being grown to age 15.
Framerate was measured for traversal while the
forest was being grown. Timing was repeated
over the same path after the trees have reached
the desired age. The right-most column lists
the times required to grow all 400 (or 1600)
trees to 15 productions without any rendering.
Table 5 lists same measurements for growing
forests from 12 to 18 productions. All
traversals use the inertial LOD model. Note
that times to grow the entire scene dramatically
exceed the total times for 200 frames of
combined traversal and growing. Thus,
visibility-based dynamic scene-modification
results in substantial time savings.

 Micikevicius and Hughes

Num. Grow
trees FPS time FPS time time

400 6.80 29.42 8.59 23.30 45.11
1600 2.92 68.56 6.08 32.89 654.66

Traverse and grow Grow then traverse

Table 4: Forests grown from 12 to 15
productions

Num. Grow
trees FPS time FPS time time

400 5.07 39.48 6.94 28.81 154.47
1600 1.73 115.95 4.08 49.08 2255.05

Traverse and grow Grow then traverse

Table 5: Forests grown from 12 to 15
productions

5. Discussion and Future Work

An inertial LOD model as well as a visibility-
based walk-through framework were proposed
in this paper. Inertial LOD model can be used
to minimize popping artifacts when switching
between discrete LODs. This is critical for
objects, such as trees, that are not amenable to
progressive surface-simplification methods.
Forest walk-through was used as a sample
application, with the proposed framework
achieving speedup up to 20 over view frustum
culling alone. Furthermore, the proposed
framework used visibility information to
dynamically grow the forest at run-time,
dramatically increasing performance when
compared to the naïve approach of growing the
entire forest first. A two-pass hardware-
efficient implementation of the hierarchical
LOD model was described. This technique
would require only a single pass (implying a
40% increase in performance) if graphics
hardware allowed choosing the blending
function based on the outcome of the depth test.

An interesting direction for future work is
to extend the visibility computation to consider
object fragmentation in the final image.
Consider two equally sized instances of the
same object that is 50% visible. The instance
which is visible as one contiguous block of
pixels may need a higher LOD than the one that
is visible as a collection of small disjoint
blocks. Such LOD-selection technique would
require fast reading of the framebuffer as well
as efficient image processing techniques.

6. References

[1] Andujar, C., C. Saona-Vazquez, I. Navazo, P.
Brunet. 2000. Integrating occlusion culling and
levels of detail through hardly-visible sets.
Computer Graphics Forum 19(3), 2000.

[2] D. Bartz, M. Meiβner, T. Hüttner. Extending
graphics hardware for occlusion queries in
OpenGL. Proc. of Workshop on Graphics
Hardware 98, 1998, 97-104.

[3] D. Bartz, M. Meiβner, T. Hüttner. OpenGL-
assisted occlusion culling for large polygonal
models. Computer and Graphics 23(5), 1999,
667-679.

[4] N. Chiba, K. Muraoka, A. Doi, J. Hosokawa.
Rendering of forest scenery using 3D textures.
The Journal of Visualization and Computer
Animation 8, 1997, 191-199.

[5] D. Cohen-Or, Y. Chrysanthou, C. T. Silva, F.
Durand. A survey of visibility for walkthrough
applications. IEEE Transactions on Visualization
and Computer Graphics 9(3, 2003), 412-431.

[6] S. Coorg, S. Teller. Real-time occlusion culling
for models with large occluders. 1997 Symposium
on Interactive 3D Graphics, 1997, 83-90.

[7] P. Decaudin, F. Neyret. Rendering Forest Scenes
in Real-Time. Eurographics Symposium on
Rendering, June, 2004, 93-102.

[8] O. Deussen, P. Hanrahan, B. Lintermann, R.
Mĕch, M. Pharr, P. Prusinkiewicz. Realistic
modeling and rendering of plant ecosystems, Proc.
of SIGGRAPH 98, 1998, 275-286.

[9] O. Deussen, C. Colditz, M. Stamminger, G.
Drettakis. Interactive visualization of complex
plant ecosystems. Proc. of IEEE Visualization 02,
2002, 219-226.

[10] C. Everitt. Interactive order independent
transparency. NVidia whitepaper, 2002.

[11] N. Greene, M. Kass, G. Miller. Hierarchical z-
buffer visibility. Proc. of SIGGRAPH 93, 1993,
231-240.

[12] H. Hey, R. F. Tobler. Lazy occlusion grid culling.
Technical Report TR-186-2-99-09, Vienna
University of Technology, March 1999.

[13] H. Hey, R. F. Tobler, W. Purgathofer. Real-time
occlusion culling with a lazy occlusion grid.
Technical Report TR-186-2-01-02, Vienna
University of Technology, January 2001.

[14] T. Hudson, D. Manocha, J. Cohen, M. Lin, K.
Hoff, H. Zhang. Accelerated occlusion culling
using shadow frusta. Proc. of the 13th Annual
ACM Symposium on Computational Geometry,
1997, 1-10.

[15] Jakulin. Interactive vegetation rendering with
slicing and blending. Proc. of Eurographics 2000,
Short Presentations, 2000.

[16] J. T. Klosowski, C. T. Silva. Efficient
conservative visibility culling using the prioritized-
layered projection algorithm. IEEE Transactions
on Visualization and Computer Graphics 7(4),
2001, 365-379.

 Visibility-based Walk-through Framework Using Inertial LOD Model

[17] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B.
Watson, R. Huebner. Level of Detail for 3D
Graphics. Morgan-Kaufmann, 2002.

[18] D. Marshall. Multiresolution rendering of
complex botanical scenes, Proc. of Graphics
Interface 97, 1997, 96-104.

[19] N. Max. Hierarchical rendering of trees from
precomputed multi-layer z-buffers. In
Eurographics Workshop on Rendering 96, 1996,
165-174.

[20] N. Max, O. Deussen, B. Keating. Hierarchical
image-based rendering using texture mapping
hardware. In Eurographics Workshop on
Rendering 99, 1999, 57-62.

[21] Meyer, F. Neyeret, P. Poulin. Interactive
rendering of trees with shading and shadows. Proc.
of Eurographics Workshop on Rendering, 2001.

[22] R. Mĕch, P. Prusinkiewicz. Visual models of
plants interacting with their environment, Proc. of
SIGGRAPH 96, 1996, 397-410.

[23] P. Oppenheimer. Real time design and animation
of fractal plants and trees. Proc. of SIGGRAPH
86, 1986, 55-64.

[24] P. Prusinkiewicz, M. James, R. Mĕch. Synthetic
topiary, Proc. of SIGGRAPH 94, 1994, 351-358.

[25] Remolar, M. Chover, Ó. Belmonte, J. Ribelles, C.
Rebollo. Geometric simplification of foliage.
Proc. of Eurographics ‘02, 2002, 397-404.

[26] V. K. Sims, J. M. Moshell, C. E. Hughes, J. E.
Cotton, J. Xiao. Recognition of computer
generated trees. Proceedings of the Human
Factors and Ergonomics Society 46, 2002, 2215-
2219.

[27] V. K. Sims, J. M. Moshell, C. E. Hughes, J. E.
Cotton, J. Xiao. Salient characteristics of virtual
trees. Proceedings of the Human Factors and
Ergonomics Society 45, 2001, 1935-1938.

[28] J. Weber, J. Penn. Creation and rendering of
realistic trees. Proc. of SIGGRAPH 95, 1995, 119-
128.

[29] H. Zhang, D. Manocha, T. Hudson, K. Hoff.
Visibility culling using hierarchical occlusion
maps. Proc. of Siggraph 97, 1997, 77-88.

