
JDMS, Volume 2, Issue 1, January 2005 Page 51–59
© 2005 The Society for Modeling and Simulation International

The Future of Mixed Reality:
Issues in Illumination and Shadows
Jaakko Konttinen
Charles E. Hughes
Sumanta N. Pattanaik
School of Computer Science
University of Central Florida
Orlando, Florida
Jaakko@cs.ucf.edu
ceh@cs.ucf.edu
sumant@cs.ucf.edu

Military training, concept design, and pre-acquisition studies often are carried out in virtual settings in which
one can experience that which is, in the real world, too dangerous, too costly, or even beyond current technology.
Purely virtual environments, however, have limitations in that they remove the participant from the physical
world with its visual, auditory, and tactile complexities. In contrast, mixed reality (MR) seeks to blend the real
and synthetic. How well that blending works is critical to the effectiveness of a user’s experience within an MR
scenario. The focus of this paper is on the visual aspects of this blending or more specifically on the interactions
between the real and virtual in the contexts of proper inter-occlusion, illumination, and inter-shadowing. This
means that the virtual objects must react properly to changes in real lighting and that the real must react properly
to the insertion of virtual lights (e.g., a virtual flashlight or a simulated change in the time of day). Even more
challenging, virtual objects must cast shadows on real objects and vice versa. The proper casting of shadows is
critical to military training, in that shadows often provide clues of others’ movements, and of our own to others,
long before visual contact is made. Realistic shadows can improve training greatly; their omission or the insertion
of physically incorrect shadowing can lead to negative training. To be effective, visual realism requires all such
interactions occur at interactive rates (30+ frames per second). Our research focuses on algorithmic development
and implementation of these procedures on programmable graphics units (GPUs) found commonly on today’s
commodity graphics cards. The algorithms we develop are tailored to take advantage of the parallel pipeline
architecture of GPUs. Our primary application is training of dismounted infantry for the complexities of military
operations in urban terrain (MOUT).

Keywords: Mixed reality, virtual reality, real-time rendering, illumination, graphics processing unit (GPU)

1. Introduction

Mixed reality (MR) covers the broad spectrum of
mixing the real and virtual that runs from augmented
reality (AR), where the virtual augments the real (e.g.,
where people and objects in the room may be a mixture
of real and virtual), to augmented virtuality, where the
real world augments the virtual (e.g., when real people
appear to be situated in a virtual setting such as in a
model of an urban environment) [1].
 The blending of the visual aspects of the real world and
virtual components is achieved in current MR systems by
using one of two visual capture/display techniques. The
first approach is to employ an optical see-through Head
Mounted Display (HMD) with virtual objects inserted
into the user’s visual field [2]; the second is to employ
a video see-through HMD in which the real world, as
captured through cameras on the HMD, is processed,

changed, and augmented with virtual objects, and then
transmitted to displays in the user’s direct line-of-sight
[3]. Our work assumes the latter.
 Employing mixed reality as the basis for commercial
and educational products requires that complex virtual
content be seamlessly merged with the real [4]. This
blending requires an analysis and understanding of the
real objects so that proper inter-occlusion, illumination,
and inter-shadowing can occur. The issues addressed in
this paper are: (a) lighting of real by virtual and vice
versa, and (b) shadowing of virtual on real and vice
versa. Audio and haptics, while equally important to
the effectiveness of MR experiences, are not addressed
here.

2. MR/MOUT

Although the techniques we present here are applicable
to all MR experiences in which lighting is important,
illumination and shadows play a particularly critical
role in training for military operations in urban terrain

Volume 2, Number 130 JDMS

Konttinen, Hughes, and Pattanaik

(MOUT). The research reported here is being integrated
into the MR/MOUT project, a project supported by the
U.S. Army’s Science and Technology Objective (STO)
Embedded Training for Dismounted Soldier (ETDS) at
the Research, Development, and Engineering Command
(RDECOM) (see Figure 1). This, in turn, is being
integrated with the Naval Research Laboratory’s BARS
System in a related project supported by the Office of
Naval Research.

and virtual on real, as well as the easy cases of real on
real (nature does it) and virtual on virtual. Additionally,
casting virtual light on real objects (e.g., with a virtual
flashlight) and having real light affect the appearance
and visibility of virtual objects provides the realism
needed for successful training exercises within darkened
buildings and in night settings.

3. Approaches

Accurate computation of illumination and shadow of
virtual objects in virtual worlds is challenging because of
issues of inter-object visibility and complex interaction
of light with objects. However, the challenge in mixed
reality is substantially greater. Here, we do not have
control of all environmental conditions (e.g., lighting)
and we do not have any notion of the intent of the mobile
real objects (e.g., people). Depth from stereo and other
depth cue techniques can help with the mutual occlusion
problem, but do not provide any help in the proper
illumination of virtual objects. Unfortunately, failing
to consider illumination is one effect that makes virtual
objects stand out from the real, appearing obviously
synthetic. Additionally, differences in illumination (and
positioning strategies) can have negative impacts such as
haloing of the synthetic object(s).
 In our research, we are developing efficient rendering
algorithms that address both the affect of the real world
on virtual objects and the affect of virtual objects on
the real world. To handle these issues we need at the
very minimum real-time capture of the real-world
illumination at every point of the virtual object, and
real-time modeling of the real world. While we do not
yet have a full solution to this problem we have had
substantial successes. We pre-design geometry of the
visible real objects to simulate their shadow and inter-
reflection effects on virtual objects and vice versa. For
a static physical world that is known in advance, this
pre-designing process is acceptable. We capture real-
world illumination as high dynamic range environment
maps at a point of the scene using a camera specifically
designed to capture the environment [5]. If we assume
that the major light source direction does not change
significantly, then this captured illumination can be used
for lighting all the virtual objects in the environment.

4. Lighting and Shadows in MR

Our proposed method for lighting and shadow in MR
environments is based on conventional, strictly VR
lighting techniques that have been adapted to work with
real objects in an MR environment. We require two
things to be known of the real objects at the time that
lighting is calculated: geometric information of the real
scene and camera pose information.

a) Physical reality

b) Augmented reality

Figure 1. MR/MOUT

 The primary issue in MR/MOUT is the recognition
of potential threats by soldiers on the ground who are
carrying out high-risk operations such as room clearing.
Such threats often are heard (footsteps) and their shadows
seen, long before direct visual contact occurs. To provide
the realism required to properly train people in these
MR environments, it is necessary that virtual characters
(friendlies, neutrals, and hostiles) cast shadows correctly
in interactive time. This requires the correct rendering of
all the combinations we have discussed, real on virtual

Volume 2, Number 1 JDMS 31

The Future of Mixed Reality: Issues in Illumination and Shadows

4.1 Phantom Models

We pre-model and represent geometric information of
real objects in the scene by “phantom” models, which
often are used as occlusion models. These are plain
triangle meshes that are never drawn on screen, but are
used to derive information required for the occlusion of
virtual objects by real objects and the shading of real
objects by virtual lights.
 When used as occlusion models, invisible renderings
of phantom objects visually occlude other models that
are behind them, providing a simple way to create a
multilayered scene, e.g., with the model of a person inside
a building only visible through portals (doorways and
windows). The renderings are invisible since the visual
image of each phantom model’s real-world counterpart
already is contained in the captured video frame. When
used for lighting and shadows on real objects, these
models give us 3-D information about the real-world
surface at each pixel they cover, which helps us calculate
shading changes for those pixels. Thus, using them we
can increase or decrease the effects of lights, whether real
or virtual on each affected pixel. Decreasing simulates
shadows from interfering objects; increasing simulates
directional lighting. Alternatively we can decrease
lighting and then add it back in as necessary.

4.2 Camera Tracking

In addition to geometry, we need the spatial relationship
between the virtual lights, the real objects, and the
camera. This is required for most lighting calculations
and also is needed for superimposition of phantom
objects on their corresponding real objects in the image
for the purpose of correct occlusion. For this to be
possible, we must be able to track the 3-D position and
orientation of the camera in the coordinate space of the
phantom objects (or vice versa).
 Tracking can be done by adding tracking probes to
important objects or by analyzing a scene, usually based
on shape recognition. Tracking probes can involve
magnetic, acoustical, or optical detection (active LEDs
or passive markers). Our approach is not tied to any
specific tracking technique so long as it provides the
required alignment transformation. In this paper we
show examples that use tracking based on shape marker
detection [6] (see Figure 2).

4.3 Illumination

We perform the actual illumination by shading the
original pixel color from the image based on the
lighting calculation. Because of this, we are restricted
to illuminating only those pixels for which we have
geometric information in the form of phantom objects

Figure 2. Virtual fire illuminating a real world

transformed into image space. The one exception to this
is when we want to change only the amount of ambient
virtual light in the scene.
 As calculating lighting contributions can be
computationally intensive for complex surface
materials or lighting distributions, we do these
calculations on programmable fragment shaders
found in modern commodity graphics hardware such
as those manufactured by ATI and nVidia. These
graphics processing units (GPUs) are, in effect, small
parallel computers, providing both SIMD and pipeline
parallelism.
 Composition of contribution from the virtual lights
into the video frame is done by using alpha blending
between the lighting contribution and the original pixel
intensity. The blending parameters depend on the effect
we want to accomplish. Suppose that vector D defines
the original pixel color with three components for the
RGB channels and one for alpha. Similarly the vector
S defines the virtual lighting contribution for that pixel
from the fragment shader. We can then define the final
color C as:

where M represents the material reflectance properties
(color, BRDF

1
, etc.) of the surface at that point. Since

we rarely have access to accurate material property
information for real objects in a highly dynamic scene,
we can approximate these properties by using the
original pixel color in place of M. The desired equation
is then:

 (1)

The corresponding alpha blending parameters are shown
below in the form of an Effect file commonly used to

Volume 2, Number 132 JDMS

Konttinen, Hughes, and Pattanaik

describe shading operations:

 pass VirtualFire
 {
 AlphaBlendEnable = true;
 SrcBlend = destcolor;
 DestBlend = one;
 ...
 }

 If S has a range of [0, 1], then the above equation
is equivalent to scaling D by a factor between [1, 2].
Expressing this in the form of eq. (1) is well-suited for
use with alpha blending operations. We have found this
approximation gives adequate results for matte objects
as shown in the figures. For specular objects, some
estimation of the object’s BRDF should be provided to
maintain consistency with the real-world highlights and
highlights from virtual lights.
 To decrease an image’s brightness, we scale each
channel down by some constant factor. Restoring
intensity then becomes a matter of modulating the
darkened pixel color by the light contribution from the
virtual light. The alpha blending parameters for this are
the same as for the above operation.
 For better results, the Gamma correction of the
camera should first be inverted before the RGB values
of the video frame are manipulated. After manipulation,
Gamma correction should be reapplied to prepare it for
display. This assumes that the camera follows the sRGB
curve.
 As an example, Figure 2 uses virtual fire to illuminate
a real environment based on the brightening method
described in the previous paragraphs. The motivation
behind this example was to see if a highly dynamic light
source such as fire still could convincingly illuminate a
real environment.
 For the lighting calculation, we chose a point light-
based approximation of the light contributed by all
particles. We sorted each particle into separate groups
based on the particle’s remaining life, and used the
average positions and intensities in each group to
calculate a point light for that group. The total light
contribution is then the sum of the light contribution
from each point light. We brighten surrounding pixels
based on these point lights. A more physically accurate
lighting model certainly would give much better results
and could be implemented without having to change the
underlying shading framework.

4.4 Including Shadows

In this section we describe a method for adding shadow
to a scene lit by virtual lights. The method for adding
shadow to an augmented reality scene is based on a

novel method presented in [7] and has been modified to
include light contributions from virtual lights. Haller’s
original method uses the shadow volume technique
[8] from computer graphics adapted to hardware-
accelerated graphics in [9].

 4.4.1 Shadow Volumes

Given a point light source and an occluding object, a
shadow volume defines the subset of 3-D space that
is in the occluder’s shadow. Any point that lies inside
this volume is not lit by the given light source. Only
information about the boundary of the shadow volume
is necessary for our algorithm.
 To construct a shadow volume for some combination
of light and occluder, we begin by finding the silhouette
set of edges for the occluder. The silhouette edge set is
the set of those edges that would appear in the silhouette
of the occluder. One method of finding silhouette edges
for triangle meshes is to iterate through each edge of the
occluder while looking at the facings of the two triangles
shared by the edge. If one triangle faces the light and
the other faces away from the light, then the edge is a
silhouette edge.
 This silhouette edge set creates the “outline” of the
shadow volume. We now need to extrude this shape
into a three-dimensional volume. This is performed by
considering each edge and performing the following
operations. Each edge is defined by two vertices. For
each of these vertices, we construct a vector from the
light to the vertex and duplicate that vertex along the
vector some distance away from the light. The distance
can be arbitrarily determined and most implementations
use the light’s maximum range as the distance. Now
we have another version of each silhouette edge some
distance away from the light. Each pair of edges, the
extruded and the unextruded edge, forms two sides of
a rectangle. The remaining two sides are constructed by
forming two new edges from each corresponding pair of
edge vertices. If we construct such a rectangle for each
pair of edges, we have created a solid volume.
 Testing if a point lies within an arbitrary volume can
be an expensive operation. For improved performance
we carry out this calculation in graphics hardware.

 4.4.2 Stencil Shadow Rendering

The stencil shadow volume rendering technique [9] is a
hardware-accelerated approach to testing if a pixel lies
inside some shadow volume or not. It is well supported
by most video cards because the only special feature
required is stencil buffer support. The stencil buffer is an
extension of the depth buffer and is used to stencil out
certain areas from rendering. When writing to the stencil
buffer, arithmetic operations can be performed on the

Volume 2, Number 1 JDMS 33

The Future of Mixed Reality: Issues in Illumination and Shadows

data values. The frame buffer can then be initialized to
only render on those parts that pass a user-definable
comparison test with the matching stencil buffer data
value. In a strictly virtual setting the technique consists
of the following rendering passes:

 1. Render all objects with ambient lighting only.
 2. Fill the stencil buffer based on the calculated
 shadow volumes.
 3. Render those parts with full lighting that are not in
 shadow.

 Stage one lights the scene with ambient lighting.
Ambient light is represented as a constant term and is
used as a cheap approximation of indirect light reflecting
from other objects and is assumed to be unoccluded.
Stages two and three are not very intuitive and require
some clarification. First note that in the process of
rendering all objects with ambient lighting in step one,
we have filled the depth buffer with the final depth
information for the scene for the current frame. We thus
disable writing to the depth buffer for the remaining
passes, although it is crucial to the technique that we still
perform depth testing. Depth testing is a general hidden
surface removal algorithm. For every pixel in the image
the depth buffer stores the distance of the closest point
whose projection onto the image plane lies on that pixel.
Thus when a new point is projected, it is tested against
the current value in the depth buffer and discarded if
the current value in the buffer is lower (i.e., a previously
drawn point appears in front of the new one along the
viewing ray through that pixel). Otherwise, the pixel is
drawn on-screen and the depth buffer value is updated.
Step two is performed by first clearing the stencil buffer
to all zeroes, then rendering each shadow volume
boundary mesh to the stencil buffer in two parts. In
the first pass we only render front-facing polygons; for
all visible shadow volume pixels after depth testing we
increment the stencil value by one. In the second pass
we render only back-facing polygons and decrement
the stencil value by one. After all shadow volumes have
been rendered, the pixel is in shadow if the stencil value
is non-zero.
 This works because of the depth information from
step one. It effectively is the same as casting rays from
the eye through each pixel on the image plane and
terminating the ray on the first shadow-receiving object.
If the pixel is in shadow, the point of termination of the
ray must lie within the shadow volume. Another way
of looking at this is the ray entered the shadow volume
but never exited it. So for all pixels where the shadow
volume intersects a shadow-receiving object, front-facing
triangles pass the depth test but back-facing triangles
fail it, and the addition from the visible front faces to the
stencil value is never negated by the subtraction from the
culled back faces. The algorithm is similar to the point-

in-polygon algorithm from computational geometry,
where a point is determined to be inside a polygon by
counting the number of times a ray to the point crosses
the polygon boundary.

 4.4.3 Adapted Version

The standard stencil shadowing technique for augmented
reality [7] only deals with shadowing in an environment
where virtual lights are not expected to interact with real
objects for purposes other than casting shadows. The
effects of including shadowing with illumination give
most appealing results when combined with the image
pre-darkening method from earlier section. Changes
required for implementing shadows in a situation with
no ambient darkening are mentioned where necessary
(such as the case of the virtual fire example). We will
adopt the terminology from [7] for describing the
algorithm. The steps for rendering shadows with the
adapted method are as follows:

 1. Render real shadows on real objects.
 2. Render virtual shadows on real objects.
 3. Render real and virtual shadows on virtual
 objects.

 In this notation, real objects denote the phantom
objects of each tracked real object. Each step is discussed
in more detail in the following sections. Real shadows
on real objects are already contained in the captured
image, so step one can be executed by simply drawing
the captured image. The remaining steps are discussed in
the following sections.

 4.4.4 Virtual/Real Shadows

The purpose of this step is to render shadows cast
from virtual objects to real objects. In the process we
also will virtually darken the image, and then restore
intensity to real objects with the virtual light. It basically
is an execution of the standard stencil shadow volume
algorithm with some additional steps:

 1. Render real object phantoms to depth buffer.
 2. Darken areas not covered by phantoms by factor F.
 3. Render shadow volumes to stencil buffer.
 4. Light areas that are not in shadow by the virtual
 light according to above sections.
 5. Darken areas in shadow by factor F.

 Stage one fills the depth information for the scene.
Stage two begins with the assumption that everything in
the scene for which we do not have 3-D information is
in shadow. If we are darkening the scene, this effect is
performed here for those pixels that are not covered by
phantom objects.

Volume 2, Number 134 JDMS

Konttinen, Hughes, and Pattanaik

 In stage three we determine which pixels, for which
we have depth information, are in shadow. To determine
the set of shadow volumes to render in stage three
depends on whether or not we want real objects to cast
new shadows on other real objects when influenced by
virtual lights. If we do not, then the total set is only the
set of virtual shadow volumes. If we do, then we render
real shadow volumes as well.
 In stage four we use one of the blending operations
from one of the previous sections. If we are restoring
intensity, the thing to remember is that the destination
pixels for which we had depth information are still at
their original (maximum) intensity. If we are modulating
the destination color by the incoming color (which
represents the lighting contribution), then we should
choose an ambient color that matches F, the scaling
factor from stage two. If we are increasing intensity,
then stages two and five can be ignored.
 In stage five, we perform the same operation as in
stage two for those pixels that were determined to be in
shadow by stage three.

 4.4.5 Real/Virtual Shadows

The pass for rendering shadows from real and virtual
objects to virtual objects remains unchanged. Briefly:

 1. Clear the stencil buffer.
 2. Render virtual objects with ambient lighting only.
 3. Render real and virtual shadow volumes to stencil
 buffer.
 4. Render unshadowed portions of virtual objects with
 full lighting.

Stages two and four should pick the same scaling factor
F from 4.4.4.
 Figure 3 shows a demonstration of a virtual light
illuminating virtual and real objects, and virtual objects
casting shadow on virtual and real objects. We track
a special marker which represents the location of the
virtual flashlight in the scene. The user can “shine”
the flashlight at real objects which should then be lit
correctly. The flashlight also should illuminate any
virtual objects it is shined toward.

4.5 Environment Lighting

Unlike point light sources, illumination from a scene is
omni-directional in nature and hence rendering of virtual
objects with such a light source is not straightforward.
We pre-compute and store accurate lighting effects of
spherical harmonics basis light sources on the vertices
of the virtual objects. At the time of rendering for MR,
we approximate the captured environment light into a
linear combination of the spherical harmonics basis.

 We make use of the GPU vertex engine to compute the
lighting at each vertex by modulating the stored lighting
effects corresponding to each spherical harmonics basis
light with the corresponding approximation coefficient
and summing the modulated values.
 The images in Figure 4 show a virtual object (bunny)
accurately lit using the captured light of the scene. For
shadow computation on the table, we well-tessellate the
phantom geometry attached to the bottom of the virtual
object. For each vertex of the phantom mesh, we pre-
compute the lighting effect of the spherical harmonics
basis lights with and without the virtual object. We
store the ratio of these coefficients at the mesh vertices.
During rendering, we carry out the same computation at
the phantom mesh vertices as we do at the vertices of the
virtual object. However, the computation result at the
mesh vertices gives the attenuation factor. We attenuate
the intensity of the pixels corresponding to the phantom
by the interpolated factor. This results in a smooth
shadow appropriate to the lighting in the scene. We
demonstrate this shadow in Figure 4, left side image.
 Notice the realistic shadow appearance on the table
around the bunny in the left image. The image on the
right is without shadow.

Figure 3. Virtual flashlight illuminating virtual and real
objects.

Figure 4. Accurately illuminated virtual bunny

Volume 2, Number 1 JDMS 35

The Future of Mixed Reality: Issues in Illumination and Shadows

4.6 Shadow Mapping

The advantage of the shadow volume method from 4.4
is that it always guarantees artifact-free shadows. Most
mixed reality scenes however are highly dynamic, which
means that the shadow volumes most likely will be
recomputed every frame for many objects. If the objects
are high polygon this may affect performance.
 An alternative shadowing method from computer
graphics is shadow mapping. In shadow mapping, the
view is rendered from the perspective of each light to an
off-screen buffer called a shadow map and the output
is distance to light instead of color. In the end, the
shadow map’s contents represent the distance of the first
intersection point with an occluder for a particular ray
of light. When rendering the scene from the camera’s
perspective, the shadow map is bound as a texture
and for each visible point the matching pixel to which
that point projects on the shadow map is found. If the
distance sampled from the shadow map is less than the
distance to the light of that surface point, the surface
point is in shadow. This is analogous to a depth test
from the light’s perspective.
 Shadow maps are useful since they can be used with
any geometry that can be rasterized on screen, and they
do not require expensive pre-computation on the CPU,
such as shadow volume calculation. The disadvantage
is that the resolution of the shadow map is finite and
thus jagged shadow edges will be visible when viewed
up-close.
 Adaptation of the shadow mapping algorithm to
mixed reality applications is simple because we already
have geometry for real objects in the form of the phantom
meshes. In short:

 1. Render real and virtual objects to the shadow map.
 2. Optionally darken all pixels with no depth
 information from phantoms by some scaling factor
 F.
 3. Render real object phantoms on screen to fill the
 depth buffer. In this stage, change the pixel color
 based on virtual lighting contributions and the
 shadowing term from the shadow map algorithm.
 4. Composite, light and shadow virtual objects on-
 screen.

 In stage one the shadow map is constructed as normally
by rendering all virtual objects and all real objects from
the light’s perspective. All real objects are then rendered on
screen with full lighting and modulated by the shadowing
term given by the shadow map algorithm in stages two
and three. All virtual objects are then composited to the
scene and lit and shadowed similarly.

5. User-assisted Phantom Generation

The main motivation for using the following method is
easy adaptability to a new testing environment, which
means that the phantom geometry for real objects can
easily be recalculated on the testing site. For simplicity
we restrict ourselves to constructing planar surfaces that
were on the plane of the marker.
 Suppose the transformation is represented as a 4x4
matrix M, then the equation for screen-space coordinates
x and y from world space coordinates X, Y, and Z where
Z=0, are represented by the following equations:

 Now for any given x and y, we can solve for the
corresponding X and Y by solving the following system
of linear equations:

 Where

 Our software allows the user to quickly trace a concave
polygon in the image where each vertex is defined in
screen space, use the above formula to solve for the shape
of the polygon in world space, and then convert it to a
triangle mesh that can be lit through the use of a general
concave polygon triangulation algorithm. We assume
that the vertex normals are always perpendicular to the
polygon. Because the tracing happens entirely in screen
space, it can be fully automated using some feature
tracking algorithm. Unfortunately our method is limited
to planar shapes. Calculating the changing Z-coordinate
of a non-planar shape would require employing dense
stereo data or a computer vision-based algorithm such
as structure from motion.

Volume 2, Number 136 JDMS

Konttinen, Hughes, and Pattanaik

6. Delivering the Training Experience

The lighting and shadowing algorithms just described
have been incorporated into a suite of software, the MR
Software Suite (MRSS), which acts as our development
and delivery system for MR experiences [10]. It integrates
a collection of concurrent cooperating components. The
central component is the MR Story Engine, a container
for agents (actors), one for every user, virtual object
and real object that interacts with other agents, plus
additional agents that are useful for the story line. The
other three subsystems (Figure 5) are for various aspects
of rendering a multimodal simulation (graphics, audio,
and special effects).

reality framework. We will now outline some potential
directions of research to further enhance the effects of
virtual lighting in the simulation experience.
 The algorithms presented here assume information
about real-world surfaces in the form of pre-computed
geometry. For highly uncontrolled scenes, such as
those in which objects frequently undergo non-rigid
transformations (e.g., bending), this information may be
inadequate. A solution presents itself in the form of dense
stereo data, which approximates the scene as a dense
cloud of 3-D points. The problem can then potentially
be viewed in the domain of point-based rendering, where
real-time rendering algorithms recently have appeared.
 For real-world objects with complicated material
properties, more information is needed for believable
virtual lighting to occur, such as measured BRDF data.
Equipment and algorithms are available for extracting
and compressing such information. If some limited
knowledge of the real-world lighting distribution is
available, some on-the-fly estimation of the reflective
properties of objects also may be performed with the
use of high-dynamic range cameras.
 The effective integration of lighting and shadowing is
required to fully immerse a dismounted soldier into an
MR training experience. However, this integration needs
to go beyond the visual rendering described earlier. In
particular, the behaviors of virtual objects need to be
affected by lighting, just as we hope the behaviors of the
human trainees are. That means that, for instance, when
the graphical rendering of a virtual entity casts a shadow,
or the shadow cast by another virtual or real entity is
in its line-of-sight, the agent associated with that entity
must be “aware” of these circumstances. How the agent
reacts is dependent on its behavior scripts. For instance,
the agent may hide from a perceived threat, or it may
ignore this state information if it is “dumb” or if other
state information takes precedence (e.g., when it is part
of an active fire fight).
 To date, we have implemented some primitive feedback
of visual rendering on agent behavior (e.g., using ray
tracing to inform agents of objects in their line-of-sight).
Creating more cognizant agents that react appropriately
to feedback associated with lighting and shadowing is
an active area of our current research and one which
we believe greatly will increase the effectiveness of MR
training.

8. Acknowledgements

This work is partially supported by the Office of Naval
Research, ATI Research, the I-4 Corridor Fund, and
the Army’s Research, Development, and Engineering
Command (RDECOM, Orlando). Special thanks are
due to the Mixed Reality Laboratory, Canon Inc., for
their generous support and technical assistance.

Figure 5. Flow of major MRSS components

 The Graphics Engine is the part that contains
the implementations of the lighting and shadowing
algorithms. These visual effects, along with complex,
realistic behaviors, significantly enhance the effectiveness
of MR-based military training for encounters in close
quarters.
 The MRSS also provides a capture capability that
is essential for “after-action review,” a process used in
training to assess the performance of users. Replaying
trainees’ actions can show them places where they
missed cues (e.g., the shadows of hostiles) or where they
provided cues that could or did place them in jeopardy.
Moreover, the ability of our replay to change a user’s
viewpoint can be used to show trainees advantages that
they may have gained if they had taken advantage of
their environments (e.g., by standing in shadows).

7. Conclusions and Future Directions

We have presented a method for including contributions
from virtual lights in a mixed reality scene in a manner
where computer graphics lighting algorithms can
easily be integrated into a mixed reality application
with few to no modifications to the existing mixed

Volume 2, Number 1 JDMS 37

The Future of Mixed Reality: Issues in Illumination and Shadows

9. References

[1] Milgram P., F. Kishino. 1994. A Taxonomy of Mixed Reality Visual
Displays. IEICE Trans. on Information and Systems, E77-D(12),
1321-1329.

[2] Rolland, J.P., H. Fuchs. 2000. Optical Versus Video See-Through
Head-Mounted Displays in Medical Visualization. Presence:
Teleoperators and Virtual Environments 9(3), 287-309.

[3] Uchiyama, S., et al. 2002. MR Platform: A Basic Body on Which
Mixed Reality Applications are Built. ISMAR 2002, Darmstadt,
Germany, 246-256.

[4] Stapleton, et al. 2002. Applying Mixed Reality to Entertainment. IEEE
Computer 35(12), 122-124.

[5] Pointgrey Research Inc. 2004. Retrieved June 20, 2004, from http://
ptgrey.com/products/ladybug/.

[6] Kato, H., et al. 2000. Virtual Object Manipulation on a Table-top AR
Environment. Proceedings of ISAR 2000, 111-119.

[7] Haller, M., S. Drab, W. Hartmann. 2003. A Real-time Shadow
Approach for an Augmented Reality Application Using Shadow
Volumes. Proceedings of VRST 2003, 56-65.

[8] Crow, F. C. 1977. Shadow Algorithms for Computer Graphics.
Proceedings of SIGGRAPH 77, 242-248.

[9] Heidmann, T. 1991. Real Shadows, Real Time. Iris Universe, 18
(November), 23-31.

[10] M. O’Connor, C. E. Hughes. Authoring and Delivering Mixed Reality
Experiences. Proceedings of 2005 International Conference on
Human-Computer Interface Advances in Modeling and Simulation
(SIMCHI’05), 33-39.

 Endnote

 1 BRDF is the Bidirectional Reflectance Distribution
Function. It gives the reflectance of an object as a

