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Military training, concept design, and pre-acquisition studies often are carried out in virtual settings in which 
one can experience that which is, in the real world, too dangerous, too costly, or even beyond current technology. 
Purely virtual environments, however, have limitations in that they remove the participant from the physical 
world with its visual, auditory, and tactile complexities. In contrast, mixed reality (MR) seeks to blend the real 
and synthetic. How well that blending works is critical to the effectiveness of a user’s experience within an MR 
scenario. The focus of this paper is on the visual aspects of this blending or more specifically on the interactions 
between the real and virtual in the contexts of proper inter-occlusion, illumination, and inter-shadowing. This 
means that the virtual objects must react properly to changes in real lighting and that the real must react properly 
to the insertion of virtual lights (e.g., a virtual flashlight or a simulated change in the time of day). Even more 
challenging, virtual objects must cast shadows on real objects and vice versa. The proper casting of shadows is 
critical to military training, in that shadows often provide clues of others’ movements, and of our own to others, 
long before visual contact is made. Realistic shadows can improve training greatly; their omission or the insertion 
of physically incorrect shadowing can lead to negative training. To be effective, visual realism requires all such 
interactions occur at interactive rates (30+ frames per second). Our research focuses on algorithmic development 
and implementation of these procedures on programmable graphics units (GPUs) found commonly on today’s 
commodity graphics cards. The algorithms we develop are tailored to take advantage of the parallel pipeline 
architecture of GPUs. Our primary application is training of dismounted infantry for the complexities of military 
operations in urban terrain (MOUT).
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1. Introduction

Mixed reality (MR) covers the broad spectrum of 
mixing the real and virtual that runs from augmented 
reality (AR), where the virtual augments the real (e.g., 
where people and objects in the room may be a mixture 
of real and virtual), to augmented virtuality, where the 
real world augments the virtual (e.g., when real people 
appear to be situated in a virtual setting such as in a 
model of an urban environment) [1].
 The blending of the visual aspects of the real world and 
virtual components is achieved in current MR systems by 
using one of two visual capture/display techniques. The 
first approach is to employ an optical see-through Head 
Mounted Display (HMD) with virtual objects inserted 
into the user’s visual field [2]; the second is to employ 
a video see-through HMD in which the real world, as 
captured through cameras on the HMD, is processed, 

changed, and augmented with virtual objects, and then 
transmitted to displays in the user’s direct line-of-sight 
[3]. Our work assumes the latter.
 Employing mixed reality as the basis for commercial 
and educational products requires that complex virtual 
content be seamlessly merged with the real [4]. This 
blending requires an analysis and understanding of the 
real objects so that proper inter-occlusion, illumination, 
and inter-shadowing can occur. The issues addressed in 
this paper are: (a) lighting of real by virtual and vice 
versa, and (b) shadowing of virtual on real and vice 
versa. Audio and haptics, while equally important to 
the effectiveness of MR experiences, are not addressed 
here.

2. MR/MOUT

Although the techniques we present here are applicable 
to all MR experiences in which lighting is important, 
illumination and shadows play a particularly critical 
role in training for military operations in urban terrain 
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(MOUT). The research reported here is being integrated 
into the MR/MOUT project, a project supported by the 
U.S. Army’s Science and Technology Objective (STO) 
Embedded Training for Dismounted Soldier (ETDS) at 
the Research, Development, and Engineering Command 
(RDECOM) (see Figure 1). This, in turn, is being 
integrated with the Naval Research Laboratory’s BARS 
System in a related project supported by the Office of 
Naval Research.

and virtual on real, as well as the easy cases of real on 
real (nature does it) and virtual on virtual. Additionally, 
casting virtual light on real objects (e.g., with a virtual 
flashlight) and having real light affect the appearance 
and visibility of virtual objects provides the realism 
needed for successful training exercises within darkened 
buildings and in night settings.

3. Approaches

Accurate computation of illumination and shadow of 
virtual objects in virtual worlds is challenging because of 
issues of inter-object visibility and complex interaction 
of light with objects. However, the challenge in mixed 
reality is substantially greater. Here, we do not have 
control of all environmental conditions (e.g., lighting) 
and we do not have any notion of the intent of the mobile 
real objects (e.g., people). Depth from stereo and other 
depth cue techniques can help with the mutual occlusion 
problem, but do not provide any help in the proper 
illumination of virtual objects. Unfortunately, failing 
to consider illumination is one effect that makes virtual 
objects stand out from the real, appearing obviously 
synthetic. Additionally, differences in illumination (and 
positioning strategies) can have negative impacts such as 
haloing of the synthetic object(s).
 In our research, we are developing efficient rendering 
algorithms that address both the affect of the real world 
on virtual objects and the affect of virtual objects on 
the real world. To handle these issues we need at the 
very minimum real-time capture of the real-world 
illumination at every point of the virtual object, and 
real-time modeling of the real world. While we do not 
yet have a full solution to this problem we have had 
substantial successes. We pre-design geometry of the 
visible real objects to simulate their shadow and inter-
reflection effects on virtual objects and vice versa. For 
a static physical world that is known in advance, this 
pre-designing process is acceptable. We capture real-
world illumination as high dynamic range environment 
maps at a point of the scene using a camera specifically 
designed to capture the environment [5]. If we assume 
that the major light source direction does not change 
significantly, then this captured illumination can be used 
for lighting all the virtual objects in the environment.

4. Lighting and Shadows in MR

Our proposed method for lighting and shadow in MR 
environments is based on conventional, strictly VR 
lighting techniques that have been adapted to work with 
real objects in an MR environment. We require two 
things to be known of the real objects at the time that 
lighting is calculated: geometric information of the real 
scene and camera pose information.

a) Physical reality

b) Augmented reality

Figure 1. MR/MOUT

 The primary issue in MR/MOUT is the recognition 
of potential threats by soldiers on the ground who are 
carrying out high-risk operations such as room clearing. 
Such threats often are heard (footsteps) and their shadows 
seen, long before direct visual contact occurs. To provide 
the realism required to properly train people in these 
MR environments, it is necessary that virtual characters 
(friendlies, neutrals, and hostiles) cast shadows correctly 
in interactive time. This requires the correct rendering of 
all the combinations we have discussed, real on virtual 
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4.1 Phantom Models

We pre-model and represent geometric information of 
real objects in the scene by “phantom” models, which 
often are used as occlusion models. These are plain 
triangle meshes that are never drawn on screen, but are 
used to derive information required for the occlusion of 
virtual objects by real objects and the shading of real 
objects by virtual lights.
 When used as occlusion models, invisible renderings 
of phantom objects visually occlude other models that 
are behind them, providing a simple way to create a 
multilayered scene, e.g., with the model of a person inside 
a building only visible through portals (doorways and 
windows). The renderings are invisible since the visual 
image of each phantom model’s real-world counterpart 
already is contained in the captured video frame. When 
used for lighting and shadows on real objects, these 
models give us 3-D information about the real-world 
surface at each pixel they cover, which helps us calculate 
shading changes for those pixels. Thus, using them we 
can increase or decrease the effects of lights, whether real 
or virtual on each affected pixel. Decreasing simulates 
shadows from interfering objects; increasing simulates 
directional lighting. Alternatively we can decrease 
lighting and then add it back in as necessary.

4.2 Camera Tracking

In addition to geometry, we need the spatial relationship 
between the virtual lights, the real objects, and the 
camera. This is required for most lighting calculations 
and also is needed for superimposition of phantom 
objects on their corresponding real objects in the image 
for the purpose of correct occlusion. For this to be 
possible, we must be able to track the 3-D position and 
orientation of the camera in the coordinate space of the 
phantom objects (or vice versa).
 Tracking can be done by adding tracking probes to 
important objects or by analyzing a scene, usually based 
on shape recognition. Tracking probes can involve 
magnetic, acoustical, or optical detection (active LEDs 
or passive markers). Our approach is not tied to any 
specific tracking technique so long as it provides the 
required alignment transformation. In this paper we 
show examples that use tracking based on shape marker 
detection [6] (see Figure 2).

4.3 Illumination

We perform the actual illumination by shading the 
original pixel color from the image based on the 
lighting calculation. Because of this, we are restricted 
to illuminating only those pixels for which we have 
geometric information in the form of phantom objects 

Figure 2. Virtual fire illuminating a real world

transformed into image space. The one exception to this 
is when we want to change only the amount of ambient 
virtual light in the scene.
 As calculating lighting contributions can be 
computationally intensive for complex surface 
materials or lighting distributions, we do these 
calculations on programmable fragment shaders 
found in modern commodity graphics hardware such 
as those manufactured by ATI and nVidia. These 
graphics processing units (GPUs) are, in effect, small 
parallel computers, providing both SIMD and pipeline 
parallelism.
 Composition of contribution from the virtual lights 
into the video frame is done by using alpha blending 
between the lighting contribution and the original pixel 
intensity. The blending parameters depend on the effect 
we want to accomplish. Suppose that vector D defines 
the original pixel color with three components for the 
RGB channels and one for alpha. Similarly the vector 
S defines the virtual lighting contribution for that pixel 
from the fragment shader. We can then define the final 
color C as:

where M represents the material reflectance properties 
(color, BRDF

1
, etc.) of the surface at that point. Since 

we rarely have access to accurate material property 
information for real objects in a highly dynamic scene, 
we can approximate these properties by using the 
original pixel color in place of M. The desired equation 
is then:

        (1)

The corresponding alpha blending parameters are shown 
below in the form of an Effect file commonly used to 
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describe shading operations:

 pass VirtualFire
 {
  AlphaBlendEnable = true;
  SrcBlend = destcolor;
  DestBlend = one;
  ...
 }

 If S has a range of [0, 1], then the above equation 
is equivalent to scaling D by a factor between [1, 2]. 
Expressing this in the form of eq. (1) is well-suited for 
use with alpha blending operations. We have found this 
approximation gives adequate results for matte objects 
as shown in the figures. For specular objects, some 
estimation of the object’s BRDF should be provided to 
maintain consistency with the real-world highlights and 
highlights from virtual lights.
 To decrease an image’s brightness, we scale each 
channel down by some constant factor. Restoring 
intensity then becomes a matter of modulating the 
darkened pixel color by the light contribution from the 
virtual light. The alpha blending parameters for this are 
the same as for the above operation.
 For better results, the Gamma correction of the 
camera should first be inverted before the RGB values 
of the video frame are manipulated. After manipulation, 
Gamma correction should be reapplied to prepare it for 
display. This assumes that the camera follows the sRGB 
curve.
 As an example, Figure 2 uses virtual fire to illuminate 
a real environment based on the brightening method 
described in the previous paragraphs. The motivation 
behind this example was to see if a highly dynamic light 
source such as fire still could convincingly illuminate a 
real environment.
 For the lighting calculation, we chose a point light-
based approximation of the light contributed by all 
particles. We sorted each particle into separate groups 
based on the particle’s remaining life, and used the 
average positions and intensities in each group to 
calculate a point light for that group. The total light 
contribution is then the sum of the light contribution 
from each point light. We brighten surrounding pixels 
based on these point lights. A more physically accurate 
lighting model certainly would give much better results 
and could be implemented without having to change the 
underlying shading framework.

4.4 Including Shadows

In this section we describe a method for adding shadow 
to a scene lit by virtual lights. The method for adding 
shadow to an augmented reality scene is based on a 

novel method presented in [7] and has been modified to 
include light contributions from virtual lights. Haller’s 
original method uses the shadow volume technique 
[8] from computer graphics adapted to hardware-
accelerated graphics in [9].

   4.4.1 Shadow Volumes

Given a point light source and an occluding object, a 
shadow volume defines the subset of 3-D space that 
is in the occluder’s shadow. Any point that lies inside 
this volume is not lit by the given light source. Only 
information about the boundary of the shadow volume 
is necessary for our algorithm.
 To construct a shadow volume for some combination 
of light and occluder, we begin by finding the silhouette 
set of edges for the occluder. The silhouette edge set is 
the set of those edges that would appear in the silhouette 
of the occluder. One method of finding silhouette edges 
for triangle meshes is to iterate through each edge of the 
occluder while looking at the facings of the two triangles 
shared by the edge. If one triangle faces the light and 
the other faces away from the light, then the edge is a 
silhouette edge.
 This silhouette edge set creates the “outline” of the 
shadow volume. We now need to extrude this shape 
into a three-dimensional volume. This is performed by 
considering each edge and performing the following 
operations. Each edge is defined by two vertices. For 
each of these vertices, we construct a vector from the 
light to the vertex and duplicate that vertex along the 
vector some distance away from the light. The distance 
can be arbitrarily determined and most implementations 
use the light’s maximum range as the distance. Now 
we have another version of each silhouette edge some 
distance away from the light. Each pair of edges, the 
extruded and the unextruded edge, forms two sides of 
a rectangle. The remaining two sides are constructed by 
forming two new edges from each corresponding pair of 
edge vertices. If we construct such a rectangle for each 
pair of edges, we have created a solid volume.
 Testing if a point lies within an arbitrary volume can 
be an expensive operation. For improved performance 
we carry out this calculation in graphics hardware.

   4.4.2 Stencil Shadow Rendering

The stencil shadow volume rendering technique [9] is a 
hardware-accelerated approach to testing if a pixel lies 
inside some shadow volume or not. It is well supported 
by most video cards because the only special feature 
required is stencil buffer support. The stencil buffer is an 
extension of the depth buffer and is used to stencil out 
certain areas from rendering. When writing to the stencil 
buffer, arithmetic operations can be performed on the 
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data values. The frame buffer can then be initialized to 
only render on those parts that pass a user-definable 
comparison test with the matching stencil buffer data 
value. In a strictly virtual setting the technique consists 
of the following rendering passes:

 1. Render all objects with ambient lighting only.
 2. Fill the stencil buffer based on the calculated  
  shadow volumes.
 3. Render those parts with full lighting that are not in  
  shadow.

 Stage one lights the scene with ambient lighting. 
Ambient light is represented as a constant term and is 
used as a cheap approximation of indirect light reflecting 
from other objects and is assumed to be unoccluded. 
Stages two and three are not very intuitive and require 
some clarification. First note that in the process of 
rendering all objects with ambient lighting in step one, 
we have filled the depth buffer with the final depth 
information for the scene for the current frame. We thus 
disable writing to the depth buffer for the remaining 
passes, although it is crucial to the technique that we still 
perform depth testing. Depth testing is a general hidden 
surface removal algorithm. For every pixel in the image 
the depth buffer stores the distance of the closest point 
whose projection onto the image plane lies on that pixel. 
Thus when a new point is projected, it is tested against 
the current value in the depth buffer and discarded if 
the current value in the buffer is lower (i.e., a previously 
drawn point appears in front of the new one along the 
viewing ray through that pixel). Otherwise, the pixel is 
drawn on-screen and the depth buffer value is updated.
Step two is performed by first clearing the stencil buffer 
to all zeroes, then rendering each shadow volume 
boundary mesh to the stencil buffer in two parts. In 
the first pass we only render front-facing polygons; for 
all visible shadow volume pixels after depth testing we 
increment the stencil value by one. In the second pass 
we render only back-facing polygons and decrement 
the stencil value by one. After all shadow volumes have 
been rendered, the pixel is in shadow if the stencil value 
is non-zero.
 This works because of the depth information from 
step one. It effectively is the same as casting rays from 
the eye through each pixel on the image plane and 
terminating the ray on the first shadow-receiving object. 
If the pixel is in shadow, the point of termination of the 
ray must lie within the shadow volume. Another way 
of looking at this is the ray entered the shadow volume 
but never exited it. So for all pixels where the shadow 
volume intersects a shadow-receiving object, front-facing 
triangles pass the depth test but back-facing triangles 
fail it, and the addition from the visible front faces to the 
stencil value is never negated by the subtraction from the 
culled back faces. The algorithm is similar to the point-

in-polygon algorithm from computational geometry, 
where a point is determined to be inside a polygon by 
counting the number of times a ray to the point crosses 
the polygon boundary.

   4.4.3 Adapted Version

The standard stencil shadowing technique for augmented 
reality [7] only deals with shadowing in an environment 
where virtual lights are not expected to interact with real 
objects for purposes other than casting shadows. The 
effects of including shadowing with illumination give 
most appealing results when combined with the image 
pre-darkening method from earlier section. Changes 
required for implementing shadows in a situation with 
no ambient darkening are mentioned where necessary 
(such as the case of the virtual fire example). We will 
adopt the terminology from [7] for describing the 
algorithm. The steps for rendering shadows with the 
adapted method are as follows:

 1. Render real shadows on real objects.
 2. Render virtual shadows on real objects.
 3. Render real and virtual shadows on virtual  
  objects.

 In this notation, real objects denote the phantom 
objects of each tracked real object. Each step is discussed 
in more detail in the following sections. Real shadows 
on real objects are already contained in the captured 
image, so step one can be executed by simply drawing 
the captured image. The remaining steps are discussed in 
the following sections.

   4.4.4 Virtual/Real Shadows

The purpose of this step is to render shadows cast 
from virtual objects to real objects. In the process we 
also will virtually darken the image, and then restore 
intensity to real objects with the virtual light. It basically 
is an execution of the standard stencil shadow volume 
algorithm with some additional steps:

 1. Render real object phantoms to depth buffer.
 2. Darken areas not covered by phantoms by factor F.
 3. Render shadow volumes to stencil buffer.
 4. Light areas that are not in shadow by the virtual  
  light according to above sections.
 5. Darken areas in shadow by factor F.

 Stage one fills the depth information for the scene.
Stage two begins with the assumption that everything in 
the scene for which we do not have 3-D information is 
in shadow. If we are darkening the scene, this effect is 
performed here for those pixels that are not covered by 
phantom objects.
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 In stage three we determine which pixels, for which 
we have depth information, are in shadow. To determine 
the set of shadow volumes to render in stage three 
depends on whether or not we want real objects to cast 
new shadows on other real objects when influenced by 
virtual lights. If we do not, then the total set is only the 
set of virtual shadow volumes. If we do, then we render 
real shadow volumes as well.
 In stage four we use one of the blending operations 
from one of the previous sections. If we are restoring 
intensity, the thing to remember is that the destination 
pixels for which we had depth information are still at 
their original (maximum) intensity. If we are modulating 
the destination color by the incoming color (which 
represents the lighting contribution), then we should 
choose an ambient color that matches F, the scaling 
factor from stage two. If we are increasing intensity, 
then stages two and five can be ignored. 
 In stage five, we perform the same operation as in 
stage two for those pixels that were determined to be in 
shadow by stage three.

   4.4.5 Real/Virtual Shadows

The pass for rendering shadows from real and virtual 
objects to virtual objects remains unchanged. Briefly:

 1. Clear the stencil buffer.
 2. Render virtual objects with ambient lighting only.
 3. Render real and virtual shadow volumes to stencil  
  buffer.
 4. Render unshadowed portions of virtual objects with  
  full lighting.

Stages two and four should pick the same scaling factor 
F from 4.4.4.
 Figure 3 shows a demonstration of a virtual light 
illuminating virtual and real objects, and virtual objects 
casting shadow on virtual and real objects. We track 
a special marker which represents the location of the 
virtual flashlight in the scene. The user can “shine” 
the flashlight at real objects which should then be lit 
correctly. The flashlight also should illuminate any 
virtual objects it is shined toward.

4.5 Environment Lighting

Unlike point light sources, illumination from a scene is 
omni-directional in nature and hence rendering of virtual 
objects with such a light source is not straightforward. 
We pre-compute and store accurate lighting effects of 
spherical harmonics basis light sources on the vertices 
of the virtual objects. At the time of rendering for MR, 
we approximate the captured environment light into a 
linear combination of the spherical harmonics basis.

 We make use of the GPU vertex engine to compute the 
lighting at each vertex by modulating the stored lighting 
effects corresponding to each spherical harmonics basis 
light with the corresponding approximation coefficient 
and summing the modulated values.
 The images in Figure 4 show a virtual object (bunny) 
accurately lit using the captured light of the scene. For 
shadow computation on the table, we well-tessellate the 
phantom geometry attached to the bottom of the virtual 
object. For each vertex of the phantom mesh, we pre-
compute the lighting effect of the spherical harmonics 
basis lights with and without the virtual object. We 
store the ratio of these coefficients at the mesh vertices. 
During rendering, we carry out the same computation at 
the phantom mesh vertices as we do at the vertices of the 
virtual object. However, the computation result at the 
mesh vertices gives the attenuation factor. We attenuate 
the intensity of the pixels corresponding to the phantom 
by the interpolated factor. This results in a smooth 
shadow appropriate to the lighting in the scene. We 
demonstrate this shadow in Figure 4, left side image.
 Notice the realistic shadow appearance on the table 
around the bunny in the left image. The image on the 
right is without shadow.

Figure 3. Virtual flashlight illuminating virtual and real 
objects.

Figure 4. Accurately illuminated virtual bunny
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4.6 Shadow Mapping

The advantage of the shadow volume method from 4.4 
is that it always guarantees artifact-free shadows. Most 
mixed reality scenes however are highly dynamic, which 
means that the shadow volumes most likely will be 
recomputed every frame for many objects. If the objects 
are high polygon this may affect performance.
 An alternative shadowing method from computer 
graphics is shadow mapping. In shadow mapping, the 
view is rendered from the perspective of each light to an 
off-screen buffer called a shadow map and the output 
is distance to light instead of color. In the end, the 
shadow map’s contents represent the distance of the first 
intersection point with an occluder for a particular ray 
of light. When rendering the scene from the camera’s 
perspective, the shadow map is bound as a texture 
and for each visible point the matching pixel to which 
that point projects on the shadow map is found. If the 
distance sampled from the shadow map is less than the 
distance to the light of that surface point, the surface 
point is in shadow. This is analogous to a depth test 
from the light’s perspective.
 Shadow maps are useful since they can be used with 
any geometry that can be rasterized on screen, and they 
do not require expensive pre-computation on the CPU, 
such as shadow volume calculation. The disadvantage 
is that the resolution of the shadow map is finite and 
thus jagged shadow edges will be visible when viewed 
up-close.
 Adaptation of the shadow mapping algorithm to 
mixed reality applications is simple because we already 
have geometry for real objects in the form of the phantom 
meshes. In short:

 1. Render real and virtual objects to the shadow map.
 2. Optionally darken all pixels with no depth  
  information from phantoms by some scaling factor  
  F.
 3. Render real object phantoms on screen to fill the  
  depth buffer. In this stage, change the pixel color  
  based on virtual lighting contributions and the  
  shadowing term from the shadow map algorithm.
 4. Composite, light and shadow virtual objects on- 
  screen.

 In stage one the shadow map is constructed as normally 
by rendering all virtual objects and all real objects from 
the light’s perspective. All real objects are then rendered on 
screen with full lighting and modulated by the shadowing 
term given by the shadow map algorithm in stages two 
and three. All virtual objects are then composited to the 
scene and lit and shadowed similarly.

5. User-assisted Phantom Generation

The main motivation for using the following method is 
easy adaptability to a new testing environment, which 
means that the phantom geometry for real objects can 
easily be recalculated on the testing site. For simplicity 
we restrict ourselves to constructing planar surfaces that 
were on the plane of the marker.
 Suppose the transformation is represented as a 4x4 
matrix M, then the equation for screen-space coordinates 
x and y from world space coordinates X, Y, and Z where 
Z=0, are represented by the following equations:

 Now for any given x and y, we can solve for the 
corresponding X and Y by solving the following system 
of linear equations:

 Where

 Our software allows the user to quickly trace a concave 
polygon in the image where each vertex is defined in 
screen space, use the above formula to solve for the shape 
of the polygon in world space, and then convert it to a 
triangle mesh that can be lit through the use of a general 
concave polygon triangulation algorithm. We assume 
that the vertex normals are always perpendicular to the 
polygon. Because the tracing happens entirely in screen 
space, it can be fully automated using some feature 
tracking algorithm. Unfortunately our method is limited 
to planar shapes. Calculating the changing Z-coordinate 
of a non-planar shape would require employing dense 
stereo data or a computer vision-based algorithm such 
as structure from motion. 
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6. Delivering the Training Experience

The lighting and shadowing algorithms just described 
have been incorporated into a suite of software, the MR 
Software Suite (MRSS), which acts as our development 
and delivery system for MR experiences [10]. It integrates 
a collection of concurrent cooperating components. The 
central component is the MR Story Engine, a container 
for agents (actors), one for every user, virtual object 
and real object that interacts with other agents, plus 
additional agents that are useful for the story line. The 
other three subsystems (Figure 5) are for various aspects 
of rendering a multimodal simulation (graphics, audio, 
and special effects).

reality framework. We will now outline some potential 
directions of research to further enhance the effects of 
virtual lighting in the simulation experience.
 The algorithms presented here assume information 
about real-world surfaces in the form of pre-computed 
geometry. For highly uncontrolled scenes, such as 
those in which objects frequently undergo non-rigid 
transformations (e.g., bending), this information may be 
inadequate. A solution presents itself in the form of dense 
stereo data, which approximates the scene as a dense 
cloud of 3-D points. The problem can then potentially 
be viewed in the domain of point-based rendering, where 
real-time rendering algorithms recently have appeared. 
 For real-world objects with complicated material 
properties, more information is needed for believable 
virtual lighting to occur, such as measured BRDF data. 
Equipment and algorithms are available for extracting 
and compressing such information. If some limited 
knowledge of the real-world lighting distribution is 
available, some on-the-fly estimation of the reflective 
properties of objects also may be performed with the 
use of high-dynamic range cameras.
 The effective integration of lighting and shadowing is 
required to fully immerse a dismounted soldier into an 
MR training experience. However, this integration needs 
to go beyond the visual rendering described earlier. In 
particular, the behaviors of virtual objects need to be 
affected by lighting, just as we hope the behaviors of the 
human trainees are. That means that, for instance, when 
the graphical rendering of a virtual entity casts a shadow, 
or the shadow cast by another virtual or real entity is 
in its line-of-sight, the agent associated with that entity 
must be “aware” of these circumstances. How the agent 
reacts is dependent on its behavior scripts. For instance, 
the agent may hide from a perceived threat, or it may 
ignore this state information if it is “dumb” or if other 
state information takes precedence (e.g., when it is part 
of an active fire fight).
 To date, we have implemented some primitive feedback 
of visual rendering on agent behavior (e.g., using ray 
tracing to inform agents of objects in their line-of-sight). 
Creating more cognizant agents that react appropriately 
to feedback associated with lighting and shadowing is 
an active area of our current research and one which 
we believe greatly will increase the effectiveness of MR 
training.
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Figure 5. Flow of major MRSS components

 The Graphics Engine is the part that contains 
the implementations of the lighting and shadowing 
algorithms. These visual effects, along with complex, 
realistic behaviors, significantly enhance the effectiveness 
of MR-based military training for encounters in close 
quarters.
 The MRSS also provides a capture capability that 
is essential for “after-action review,” a process used in 
training to assess the performance of users. Replaying 
trainees’ actions can show them places where they 
missed cues (e.g., the shadows of hostiles) or where they 
provided cues that could or did place them in jeopardy. 
Moreover, the ability of our replay to change a user’s 
viewpoint can be used to show trainees advantages that 
they may have gained if they had taken advantage of 
their environments (e.g., by standing in shadows).

7. Conclusions and Future Directions

We have presented a method for including contributions 
from virtual lights in a mixed reality scene in a manner 
where computer graphics lighting algorithms can 
easily be integrated into a mixed reality application 
with few to no modifications to the existing mixed 
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 Endnote

 1 BRDF is the Bidirectional Reflectance Distribution 
Function. It gives the reflectance of an object as a 




