Dynamic Range Reduction Inspired by Photoreceptor Physiology

Erik Reinhard, Member, IEEE Computer Society, and Kate Devlin

Abstract—A common task in computer graphics is the mapping of digital high dynamic range images to low dynamic range display devices such as monitors and printers. This task is similar to the adaptation processes which occur in the human visual system. Physiological evidence suggests that adaptation already occurs in the photoreceptors, leading to a straightforward model that can be easily adapted for tone reproduction. The result is a fast and practical algorithm for general use with intuitive user parameters that control intensity, contrast, and level of chromatic adaptation, respectively.

Index Terms—Tone reproduction, dynamic range reduction, photoreceptor physiology.

1 INTRODUCTION

The real world shows a vast range of light intensities ranging from starlit scenes to white snow in sunlight. Even within a single scene, the range of luminances can span several orders of magnitude. This high dynamic range within a single scene can easily be computed with computer graphics techniques. They can also be captured using a composition of multiple photographs of the same scene with different exposures [1]. In the near future, high dynamic range sensors will become generally available to directly capture high dynamic range images. Furthermore, the dynamic range of data captured with medical data acquisition techniques and scientific simulations may be arbitrarily high.

As a result, the availability of high dynamic range data will become much more commonplace than it is now. In contrast, the dynamic range of display devices is currently limited and economically sensible high dynamic range display devices are not yet commonplace. This may change in the near future as recent research has already produced a high dynamic range display by combining LCD and LED technologies [2]. The dynamic range of printers, on the other hand, will remain low. The mismatch between high dynamic range data acquisition and high dynamic range display technology will therefore persist in one form or another.

This leads to the problem of how to display high dynamic range data on low dynamic range display devices, a problem which is generally termed tone mapping or tone reproduction [3], [4]. In principle, this problem is simple: We need to turn an image with a large range of numbers into an image containing integers in the range of 0 to 255 such that we can display it on a printer or a monitor. This suggests linear scaling as a possible solution. However, this

- E. Reinhard is with the School of Computer Science, University of Central Florida, Orlando, FL 32816-2362. E-mail: reinhard@cs.ucf.edu.
- K. Devlin is with the Department of Archaeology, University of Bristol, 43 Woodland Road, Bristol BS8 1UU, UK. E-mail: Kate.Devlin@bris.ac.uk.

approach is flawed because details in the light or dark areas of the image will be lost due to subsequent quantization and the displayed image will therefore not be perceived the same as the scene that was photographed (Fig. 1).

Tone reproduction algorithms therefore attempt to scale the high dynamic range data in such a way that the resulting displayable image has preserved certain characteristics of the input data, such as brightness, visibility, contrast, or appearance. Algorithms can be classified into two broad categories: global and local operators. Global operators compress contrasts based on globally derived quantities, which may include, for example, the minimum and maximum luminance or the average luminance. In particular, the log average luminance is often computed to anchor the computation. The compression algorithm then compresses pixel contrasts according to a nonlinear function based on its luminance, as well as those global variables. No other information is used to modulate the compression curve [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15].

The shape of the compression curve is what differentiates these global algorithms. While visual inspection of the compression curves, i.e., the functions that map high dynamic range luminances to display luminances, may lead to the suggestion that most of these algorithms are very similar in nature, we have found that small differences in their functional form may lead to substantial differences in visual appearance.

Global algorithms tend to be computationally efficient, but may have distinct disadvantages. In particular, loss of detail is often associated with global operators. The more recent algorithms tend to exhibit fewer artifacts than earlier attempts, however.

A distinguishing feature of local operators is their use of neighboring pixels to derive the amount by which to compress a pixel [13], [16], [17]. Local operators may show haloing or ringing artifacts which indicate that, although the principle may be valid, the calibration of these models is critical and is often not well understood.

Tone reproduction operators may also be classified based on whether they rely on models of human visual perception or on mathematical or engineering principles. Some tone reproduction operators use explicit perceptual models to control the operator [6], [8], [9], [10], [11], [16],

Manuscript received 23 July 2003; revised 4 Mar. 2004; accepted 28 Apr. 2004.

For information on obtaining reprints of this article, please send e-mail to: tvcg@computer.org, and reference IEEECS Log Number TVCG-0061-0703.

Fig. 1. Linear scaling of HDR data (inset) will cause many details to be lost. Tone reproduction algorithms such as the technique described in this paper attempt to solve this issue, in this case, recovering detail in both light and dark areas as well as all areas in between.

[17], [18] and, in particular, work on the assumption that local spatial interaction is a key feature in dynamic range reduction [16]. Other spatially varying operators have used bi or trilateral filtering [19], [20] or compress the gradient of an image followed by numerical integration [21].

The human visual system (HVS) successfully and effortlessly overcomes dynamic range issues for a vast range of intensities by using various adaptation mechanisms. In addition to the photoreceptors (rods and cones), the retina contains additional types of cells, such as horizontal and amacrine cells, providing lateral interconnectivity, and bipolar and ganglion cells, giving distal connectivity [22]. Although this alone provides several loci where adaptation may occur, a key observation is that *all* cells in the HVS have a limited capability to produce graded potentials or spike trains. By definition this includes the very first cells in the chain of visual processing: the photoreceptors. Hence, dynamic range reduction must already occur in the rods and cones. Results from electro-physiology have confirmed this [23], [24], [25], [26].

In this paper, we adapt a computational model of photoreceptor behavior to help solve the tone reproduction problem. The aim of this work is to provide a new global tone reproduction operator that is fast and produces plausible results that are useful in practical settings such as high dynamic range photography. In addition, our model operates independently on the three color channels and incorporates a chromatic transform that allows the white point to be shifted. These features that are also present in most color appearance models [27], [28] go toward correction for the mismatch between the display environment and the lighting conditions under which the image was captured.

We believe that, for a large range of images, our method combines the speed of global tone reproduction operators with the ability to compress high dynamic range images as well as or better than current operators.

While our method is grounded in results obtained from electro-physiology, we do not present a full and complete model of photoreceptor behavior because this would add unnecessary complexity to the model. The dynamic range of cells at various stages of visual processing may differ and different adaptation mechanisms exist at different loci in the human visual system [22]. We therefore do not aim to present a complete model of the early stages of human vision, but focus on the first step of visual processing—the photoreceptors. This step is only modeled to the extent that it allows the problem of tone reproduction to be addressed. The model of visual processing employed here should therefore not be seen as complete or even predictive for human visual perception.

Also, we deviate from this model in certain areas to increase the practical use of our algorithm. In particular, we have fitted the model with four user parameters which allow overall intensity, contrast, light, and chromatic adaptation to be independently controlled. However, we do show that initial estimates may be computed for these parameters that provide results that, in most cases, require only very small adjustments.

2 ALGORITHM

Various mechanisms in the HVS mediate adaptation to lighting conditions. We specifically employ a model of photoreceptor adaptation which can be described as the receptors' automatic adjustment to the general level of illumination [24], [29]. The potential *V* produced by cones as a function of intensity *I* may be modeled by [30]:

 σ

$$V = \frac{I}{I + \sigma(I_a)} V_{max}$$
(1)
(I_a) = (fI_a)^m.

These equations are a subtle but important deviation from the more common Naka-Rushton equation [25] and are derived by Hood et al. for reasons mentioned in their paper [30]. The semisaturation constant $\sigma(I_a)$ describes the state of long-term adaptation of the photoreceptor as a function of adaptation level I_a . Both f and m are constants, but will be treated as user parameters in our adaptation of the model. Their values differ between studies, but, for m, it is found to lie between 0.2 and 0.9 [30]. The value of the multiplier f is not discussed further by Hood et al., but we have found that setting f = 1 provides a useful initial estimate. The maximum incremental response elicited by I is given by V_{max} , which we set to 1. One reasonable assumption made for (1) is that the input signal is positive so that the output Vlies between 0 and 1.

The adaptation level I_a for a given photoreceptor can be thought of as a function of the light intensities that this photoreceptor has been exposed to in the recent past. If a sequence of frames were available, we could compute I_a by integration over time [12]. This approach may account for the state of adaptation under varying lighting conditions. However, even under stationary lighting conditions, saccadic eye movements as well as ocular light scatter cause each photoreceptor to be exposed to intensity fluctuations. The effect of saccades and light scattering may be modeled by computing I_a as a spatially weighted average [31].

Some previous tone reproduction operators that use similar compression curves compute σ by spatial integration [13], [17]. However, if σ is based on a local average, then, irrespective of the shape of the compression curve, ringing artifacts may occur [32]. By carefully controlling the spatial extent of σ , these artifacts may be minimized [13],

Fig. 2. Memorial church image, showing the effect of different methods to compute the adaptation luminance I_a . The values of the weights are varied from 0 to 0.5 to 1. This image is a particularly good example to show this effect because it has a strong yellow color cast. For most images, the setting of I_a is less critical and more benign.

[19]. We compare different choices of global and local adaptation levels I_a in Section 4.

In practice, we may assume that each photoreceptor is neither completely adapted to the intensity it is currently exposed to nor is it adapted to the globally average scene intensity, but, instead, is a mixture of the two. Rather than compute an expensive spatially localized average for each pixel, we propose to interpolate between the pixel intensity and the average scene intensity. In the remainder of this paper, we will use the term *light adaptation* for this interpolation.

Similarly, a small cluster of photoreceptors may be adapted to the spectrum of light it currently receives or it may be adapted to the dominant spectrum in the scene. We expect photoreceptors to be partially adapted to both. The level of chromatic adaptation may thus be computed by interpolating between the pixel's red, green, and blue values and its luminance value. By making the adaptation level dependent on luminance only, no chromatic adaptation will be applied, whereas keeping the three channels separate for each pixel achieves von Kries-style color correction [33].

We have found that, for most images, keeping all channels fully dependent suffices, whereas using the pixel intensity itself rather than the scene average produces better compression. While, for most images, the setting of the interpolation weights is not critical, for the purpose of demonstrating the effect of different weights, we present an atypical result in Fig. 2. Our default settings would result in the image in the top right corner, which we deem overly compressed. In our opinion, the image on the middle right presents an attractive trade off between detail visibility and contrast. The effect of manipulating the two interpolation weights is generally smaller because most images have a less pronounced color cast. Results shown in the remainder of this paper will have the two interpolation weights set to their default values unless indicated otherwise.

Finally, we note that we could simulate the effect of time dependent adaptation for a still image by making the two interpolation weights functions of time and creating a sequence of images tonemapped with different interpolation weights. We illustrate this in Fig. 3, where both weights were incremented from 0 to 1 in steps of 0.2. Note that we simultaneously achieve adaptation to luminance levels as well as chromatic adaptation. The image on the right shows more detail in both the dark and light areas, while, at the same time, the yellow color cast is removed.

3 USER PARAMETERS

For certain applications, it may be important to have a tone reproduction operator without any user parameters. Other applications may benefit from a small amount of user intervention, provided that the parameters are intuitive and that the number of parameters is small. We provide an intermediary solution by fitting the model with carefully chosen user parameters that may be adjusted within a sensible range of values. These parameters have an intuitive effect on the resulting images so that parameter adjustment involves as little guesswork as possible.

In addition, we provide initial estimates of these parameters that produce plausible results for a wide variety of images. This benefits applications that require fully automatic tone reproduction and also creates reasonable initial images that may be further modified by the user.

Two of the user parameters were introduced in the previous section. These are m and f, which control contrast and intensity, respectively. In this section, we discuss their useful range of operation, as well as reasonable initial

Global adaptation

Local adaptation

Fig. 3. Outdoor scene taken at dawn and indoor scene taken around midday, both with simulated time dependent adaptation. On the left, the adaptation level I_a is computed from the average scene luminance, whereas, on the right, the adaptation level is computed using the independent red, green, and blue components of each individual pixel.

estimates. We also provide further details for the parameters that govern the level of chromatic and light adaptation.

Although the constant *m* has been determined for specific experimental set-ups [30], we have found that its value may be successfully adjusted based on the composition of the image. In particular, we make *m* dependent on whether the image is high or low-key (i.e., overall light or dark). The key *k* can be estimated from the log average, log minimum, and log maximum luminance (L_{av} , L_{min} , and L_{max}) [14]:

$$k = (L_{\text{max}} - L_{\text{av}})/(L_{\text{max}} - L_{\text{min}}),$$
 (2)

with luminance specified as:

$$L = 0.2125 I_r + 0.7154 I_q + 0.0721 I_b.$$
(3)

We choose mapping the key k to the exponent m as follows:

$$m = 0.3 + 0.7k^{1.4}.$$
 (4)

This mapping is based on extensive experimentation and also brings the exponent within the range of values reported by electro-physiological studies [30]. It was chosen for engineering purposes to make the algorithm practical for a wide variety of input data. By anchoring the exponent *m* to the log average luminance in relation to the log minimum and log maximum luminance, the model becomes robust in the sense that the input data does not need to be calibrated in particular units of measurement. This computation produces a reasonable initial estimate for m, although sometimes images may benefit from manual adjustment. We have found that the range of operation for this parameter should be limited to the range [0.3, 1). Different values of *m* result in different shapes of the compression curve, as shown in Fig. 4 for a range of values of *m*. This plot was created by tone mapping an image with a linear ramp between 10^{-3} and 10^{3} . For this ramp, the exponent m would be initialized to a value of 0.493. This parameter has a direct effect on the slope of the curve and, thus, trades contrast in medium-intensity regions for detail visibility in the dark and bright regions by becoming more or less "S"-shaped.

While the parameter f discussed above may be set to 1 as an appropriate initial value, we allow f to be varied by the user as well. Although it is possible to set f directly, the range of useful values is large and nonintuitive. We therefore replace the multiplier f by an exponential function:

$$f = exp(-f'). \tag{5}$$

By changing the parameter f' the overall intensity of the image may be altered; higher values will make the result lighter, whereas lower values make the image darker. For most images, the range of useful values of this parameter is between -8 and 8, with an initial estimate of 0 (such that f = 1 as indicated in the previous section). The tone curve follows a similar progression of shapes for different choices of f' as seen for parameter m in Fig. 4. However, in practice, the visual impact of this parameters.

We apply (1) to each of the red, green, and blue channels independently because, in the HVS, different cone types do not interact. However, it may be desirable to remove strong color casts in the image, which can be achieved by computing the adaptation level I_a for each of the red, green, and blue channels as a weighted sum of the pixel's luminance L and the intensity value of the channel:

$$I_a = cI_{r|q|b} + (1-c)L.$$
 (6)

The amount of color correction is now controlled by the weight factor *c*, which should be between 0 and 1. By setting this user parameter to 1, the red, green, and blue color channels are treated independently and this achieves color correction in the spirit of a von Kries model [33]. By default,

Fig. 4. Mapping of input luminances (horizontal) to display luminances (vertical) for different values of m.

we do not apply chromatic adaptation by setting c = 0 so that the adaptation level is the same for all three color channels.

Similarly, in rare instances, we would like to control whether the pixel adaptation is based on the pixel intensity itself or on global averages:

$$I_a = aI_{r|g|b} + (1-a)I_{r|g|b}^{av}.$$
(7)

Here, we use a second weight *a* which interpolates between the pixel intensity $I_{r|g|b}$ and the average channel intensity $I_{r|g|b}^{av}$. For a value of a = 1, adaptation is based on the pixel intensity, whereas, for a = 0, the adaptation is global. This interpolation thus controls what we will refer to as light adaptation. Its impact on the compression curve is shown in Fig. 5 and, for comparison with other operators, in Fig. 6 (we discuss this comparison further in Section 4). As with *m* and f', this parameter steers the shape of the compression curve. Although this family of curves does not span a wide range of shapes, its visual impact can be considerable, as shown in Fig. 2. By default, we set a = 1 to trade detail visibility for contrast. These interpolation schemes may be

Fig. 6. Mapping of input luminances (horizontal) to display luminances (vertical) for various tone reproduction operators and parameter settings.

TABLE 1 User Parameters

Parameter	Description	Initial value	Operating range
m	Contrast	$0.3 + 0.7k^{1.4}$	[0.3, 1.0)
f'	Intensity	0.0	[-8.0, 8.0]
с	Chromatic adaptation	0.0	[0.0, 1.0]
a	Light adaptation	1.0	[0.0, 1.0]

combined using bilinear interpolation, with $I_{r|g|b}^{av}$ and L^{av} arithmetic averages (Fig. 2):

$$\begin{split} I_{a}^{local} &= c I_{r|g|b} + (1-c) L \\ I_{a}^{global} &= c I_{r|g|b}^{av} + (1-c) L^{av} \\ I_{a} &= a I_{a}^{local} + (1-a) I_{a}^{global} \end{split}$$

For reference, Table 1 shows all user parameters, their operating range as well as their initial estimates. In practice, manipulating m and f' allows sufficiently fine control over the appearance of the tone-mapped image. In rare cases, c and a need minor adjustments, too. All four parameters are set once per image, whereas I_a and V are computed per pixel and per channel. After normalization of V, which typically expands the range of values rather than compressing them further, we set the display intensity to the photo-receptor output V, making this a simple and fast global operator. The normalization step was implemented by computing the minimum and maximum luminance in the image. The R, G, and B channels are then individually scaled using $(I_{r|g|b} - L_{min})/(L_{max} - L_{min})$ and clipped to 0 and 1. In summary, the source code of the full operator is given in Fig. 7.

double Cav[3]; channel averages double Lav: average luminance 11 // log average lum double Llav; double Lmin, Lmax; // min and max lum void tonemap (double ** *rab, // input/output image overall intensity double f, 11 double m, 11 contrast adaptation double а double C) color correction int x, y, i; loop variables double L; // pixel luminance double Ia; // pixel adaptation double I_g, I_l; // global and local $f = \exp(-f);$ (m > 0.)? m : 0.3 + 0.7 * pow ((log(Lmax) -Llav) / (log(Lmax) - log(Lmin)), 1.4); for (y = 0; y < height; y++)for (x = 0; x < width; x++) { L = luminance (rgb, x, y); for (i = 0; i < 3; i++) { I_l = c * rgb[y * rgb[y][x][i] + (1-c) + (1-c) * Lav; I_g = c * Cav[i]a * I_l + (1-a) * I_g; rgb[y][x][i] /= rgb[y][x][i] + pow (f * I_a, m); normalize (rgb, width, height);

Fig. 7. Source code. Note that user parameter m is computed from globally derived quantities unless the calling function specifies a value for m.

f' = -2.0, 0.0, 2.0

Fig. 8. Clifton suspension bridge showing the effect of varying user parameter m between ± 0.2 of the default value, and the parameter f' which was varied between -2.0 and 2.0. The enlarged image in the middle was created using our default parameter settings.

Our global operator

Our local operator with bilateral filtering

Our local operator with adaptive gain control

Fig. 9. Rosette and sunset images comparing local and global versions of our operator.

4 RESULTS

In this section, we show the effect of manipulating the user parameters m, f', a, and c on visual appearance and compare our results with existing tone mapping operators in terms of visual quality as well as computation time.

The images in Fig. 8 vary in the choice of parameters f' and m, with the middle image using default settings for all

parameters. Both f' and m may be modified beyond the range shown in this figure.

While the operator is global because m is computed from globally derived quantities, the method may be extended to a local operator by setting the adaptation level I_a to a local average of pixel intensities. Using their respective default parameter settings, we experimented with two such local operators, namely, bilateral filtering [19] and adaptive gain control [34].

Our operator

Bilateral filtering

Photographic tonemapping (global)

Trilateral filtering

Photographic tonemapping (local)

Ashikhmin's operator

Time-dependent adaptation

Logarithmic mapping

Revised Tumblin-Rushmeier

Adaptive logarithmic mapping

Uniform rational quantization

Fig. 10. Desk image.

Fig. 9 shows that our global operator performs almost as well as bilateral filtering as applied to our operator. In our opinion, bilateral filtering causes no artifacts due to its ability to avoid filtering across high contrast edges. However, the advantage of applying bilateral filtering to our operator is relatively modest, judging by the visual difference between our global operator and our local operator using bilateral filtering. This observation does not necessarily extrapolate to other tone reproduction operators that may benefit from bilateral filtering.

The effect of applying adaptive gain control is more pronounced. While bilateral filtering applies a (Gaussian) weight in both the spatial as well as the intensity domain, adaptive gain control only filters pixels in the intensity domain [34]. We believe that, for this reason, adaptive gain control has a somewhat cruder visual appearance. However, this approach has also increased the contrast of the image, which may be desirable for certain applications.

One of the more difficult images to tonemap is the "desk" image, shown in Fig. 10. Because it is impossible to know how light or dark the image should be displayed to be faithful to the original photograph, we contacted the photographer to discuss and calibrate our result. For the desk image, as a general rule of thumb, the dark area underneath the desk should be quite dark, but some details are visible. In the real scene, it was difficult to distinguish details of the bag on the left. The highlight in front of the book should appear bright. The text on the book should be visible and the light bulb should be distinguishable from the lamp shade. Note that this image has a fairly strong color cast, which we chose to remove by setting c = 1.

In the parking garage in Fig. 11, the foreground should be fairly dark, with visible detail, and the area outside

Time-dependent adaptation

Revised Tumblin-Rushmeier

Fig. 11. Parking garage.

should be bright and is also showing detail. Timing results are given in Table 2 and were obtained using a 2.53 GHz Pentium 4 CPU.

For each of the algorithms in our comparison, we manipulated the user parameters to show the details in both the light as well as the dark areas as well as possible. While this may not be in keeping with the intent of each of the operators, our aim is to provide a practical and useful operator. The fairest comparison possible is therefore one where the parameters for each method are optimized to produce the visually most pleasing results. This optimization is by its nature subjective. We applied gamma correction to all images afterward ($\gamma = 1.6$). The methods we compare against are:

Logarithmic compression. In this algorithm, we take the logarithm and apply a linear shift and scale operation to

bring the data within displayable range. This operator is included because it is one of the most straightforward techniques that produces a baseline result against which all other operators may be compared.

Adaptive logarithmic mapping. This global tone mapping algorithm logarithmically compresses each pixel, but the base of the logarithm is chosen for each pixel separately according to a bias function [15].

Bi and trilateral filtering. Here, we applied the bilateral filter as it was originally presented [19]. The method separates the image into a high dynamic range base layer and a low dynamic range detail layer with the aid of a bilateral filter which has the desirable property that the image is blurred without blurring across sharp edges. The base layer is then compressed, shifted, and recombined with the detail layer. The two user parameters for this

TABLE 2 Computation Times in Seconds for the Desk Image $(1,536 \times 1,024$ Pixels) and Garage Image (748×492 Pixels) (See Also Figs. 10 and 11)

Algorithm	Computation time	
	Desk	Garage
Ours	2.01	0.53
Ours + bilateral filtering	5.80	1.26
Ours + adaptive gain control	135.0	39.66
Photographic (local) [13]	28.86	7.47
Photographic (global) [13]	0.85	0.15
Ashikhmin's operator [17]	46.11	12.17
Bilateral filtering [19]	4.49	0.80
Trilateral filtering ^a [20]	488.0	110.8
Histogram adjustment [10]	1.78	0.43
Logarithmic compression	1.88	0.47
Adaptive logarithmic mapping [15]	1.64	0.40
Time dependent adaptation [12]	6.32	1.39
Revised Tumblin-Rushmeier [11]	2.41	0.59
Uniform rational quantization [7]	1.48	0.27

*Optimizations as applied to the bilateral filer [19] could also be applied to the trilateral filter, which would reduce the computation time by at least an order of magnitude. Our code, based on the implementations made available by the authors, does not incoporate these optimizations.

method are shifting and scaling of the base layer. We also compare against the trilateral filter, which is an extension of bilateral filtering [20].

Histogram adjustment. Histogram adjustment is a fast and widely used technique which produces good results for a large class of images [10]. We did not include the optional veiling luminance, color sensitivity, and visual acuity techniques to promote a fair comparison, but used the pcond program from the Radiance package [35] with no parameters.

Photographic tone-mapping. Photographic tone reproduction may be executed as a global as well as a local operator [13]. We used a parameter estimation technique to find the appropriate settings for each image [14].

Ashikhmin's operator. This is a local operator based on human visual perception [17]. For each pixel, a local adaptation level is computed in a manner similar to the local photographic tone mapping operator. There are no user parameters.

Time-dependent adaptation. This algorithm is a sigmoid using the original Naka/Rushton equation [25] with a fixed semisaturation constant. Although the algorithm was originally presented to explore time-dependent adaptation [12], we have adapted the algorithm for still images with help from the author. This algorithm assumes that the input is given in cd/m^2 . Because the units used for the images are unknown, this leaves two parameters to be set manually to convert the image roughly to SI units. It should be noted that, for the work on time-dependent adaptation, this operator was applied to sequences of low dynamic range images. Similar compression curves were also used for high dynamic range compression, but then the adaptation was local [34], not global as the results shown here. As such, the images shown for this operator are not directly comparable to the results obtained by Pattanaik et al. [12], [34].

Revised Tumblin-Rushmeier. This global operator is essentially a power-law based on psychophysical data [11]. Like the previous method, the algorithm is calibrated in cd/m^2 . We linearly scaled the input data and normalized the output afterward to produce what we believe the best possible results for this method in a practical setting.

Uniform rational quantization. This is another early operator which produces plausible results for many images [7]. The user parameter M was manipulated per image to produce reasonable results.

The images shown in Figs. 10, 11, 12, and 13 are fairly typical. In general, global operators tend to either appear washed-out or lose visible detail in the dark and/or light areas. Local operators tend to show the details better, but frequently do this at the cost of ringing or haloing artifacts. In our opinion, the method presented in this paper produces sensible results without obvious artifacts. It also allows strong color-casts to be removed should that be desirable.

With the exception of the iCAM color appearance model, which addresses color fidelity in the context of high dynamic range data compression [36], the issue of color fidelity in tone reproduction has not received a great deal of attention. Many tone reproduction operators only compress the luminance channel and apply the result to the three color channels in such a way that the color ratios before and after compression are preserved [7]. Fattal et al. [21] build upon this tradition by introducing an exponent *s* to control saturation. For the red channel, the display intensity R_d is then a function of the input intensity R_w , the pixel's luminance before and after compression (L_w and L_d , respectively): $R_d = L_d (R_w/L_w)^s$. The green and blue channels are processed analogously. This is a reasonable first step, but ignores the fact that color appearance varies with the overall intensity of the scene [27]. While our method does not address this issue either, in the absence of a satisfactory solution, we prefer to provide the user with control over the amount of chromatic adaptation.

Our comparison is by no means exhaustive. There are many more research images available, as well as further tone reproduction techniques that we have not mentioned. However, we do believe that the above comparison is indicative of the results one may expect from various tone reproduction operators, including the one presented in this paper.

While sigmoidal mapping functions are employed by others to describe aspects of vision [25], [30] and were later used in the field of tone reproduction [12], [34], [37] and color appearance modeling [28], [38], [39], we believe that its successful use in engineering applications strongly depends on the appropriate selection of tuning parameters. We have provided sufficient tools to shape the sigmoidal curve to suit most high dynamic range imagery.

We compare response curves for a = 0 and a = 1 with various other tone reproduction operators in Fig. 6. All graphs are normalized in this figure. The parameter M used in uniform rational quantization allows the mapping of middle gray to be adjusted. The factor f for the Tumblin and Rushmeier's operator denotes a prescaling factor we introduce to convert the input into SI units.

While the shape of our curves depend on the average luminance in relation to the minimum and maximum luminance (compare with Figs. 4 and 5), a general

Time-dependent adaptation

observation is that our curve shows a less pronounced shoulder than either uniform rational quantization [7] or photographic tone reproduction [13], but more so than Tumblin-Rushmeier's operator [11].

5 DISCUSSION

Fig. 12. Grove image.

We envision tone reproduction operators to be used predominantly by photographers as well as in other artistic applications. It is therefore our aim to present a generally applicable operator that is fast and practical to use and provides intuitive user parameters. We used findings from electro-physiology to motivate the design of our algorithm, but made engineering-based design decisions where appropriate. Experimentation with bilateral filtering and adaptive gain control techniques showed that the visual quality of our spatially varying operator is only marginally better than

Uniform rational quantization

for our global operator. We therefore believe that, for most practical applications, our fast global operator will suffice.

There are many criteria one might apply to compare qualitative results [40], [41]. For instance, one could measure how well details are preserved or how well the method models certain aspects of the human visual system. These are all worthwhile criteria, but they also assume that tone reproduction operators will be used for specific applications, such as perhaps explaining visual phenomena. Validation of tone reproduction operators for specific tasks is a very necessary avenue of research that has yet to mature, although insight into this matter is beginning to accumulate [42]. For this reason, and because we aim for general applicability, we have used visual comparison to show qualitative results.

Our operator

Logarithmic mapping

Bilateral filtering

Photographic tonemapping (global)

Adaptive logarithmic mapping

Trilateral filtering

Photographic tonemapping (local)

Ashikhmin's operator

Time-dependent adaptation

Revised Tumblin-Rushmeier

Fig. 13. Sunset image.

In the absence of straightforward validation techniques, judgment of operators is currently a matter of taste. In our opinion, the global operator presented in this paper produces visually appealing output for a wide variety of input. It shares speed-advantages with other global operators while compressing images with a quality that, in our opinion, rivals local operators, albeit without any ringing artifacts. The method has four user parameters, each with sensible initial estimates that orthogonally control contrast, overall intensity, light, and chromatic adaptation, yielding a tone reproduction operator that is fast, easy to use, and suitable for applications where plausible results are the main criterion for selection of a particular technique. We therefore believe that this algorithm will be a useful addition to the current collection of tone reproduction operators.

ACKNOWLEDGMENTS

The authors would like to thank Sumanta Pattanaik, Jim Ferwerda, Greg Ward, and Paul Debevec for making their software and research images available. The memorial church, sunset, grove, and rosette HDR data may be downloaded from http://www.debevec.org/Research/HDR/.

REFERENCES

- P.E. Debevec and J. Malik, "Recovering High Dynamic Range Radiance Maps from Photographs," SIGGRAPH '97 Conf. Proc., [1] pp. 369-378, Âug. 1997.
- H. Seetzen, L.A. Whitehead, and G. Ward, "A High Dynamic [2] Range Display Using Low and High Resolution Modulators," Proc. Soc. Information Display Int'l Symp., May 2003.
- K. Devlin, "A Review of Tone Reproduction Techniques," [3] Technical Report CSTR-02-005, Computer Science, Univ. of Bristol, 2002.

- [4] J. DiCarlo and B. Wandell, "Rendering High Dynamic Range Images," Proc. SPIE Electronic Imaging 2000 Conf., pp. 392-401, 2000.
- [5] N.J. Miller, P.Y. Ngai, and D.D. Miller, "The Application of Computer Graphics in Lighting Design," J. IES, vol. 14, pp. 6-26, Oct. 1984.
- [6] J. Tumblin and H. Rushmeier, "Tone Reproduction for Computer Generated Images," *IEEE Computer Graphics and Applications*, vol. 13, no. 6, pp. 42-48, Nov. 1993.
- [7] C. Schlick, "Quantization Techniques for the Visualization of High Dynamic Range Pictures," *Photorealistic Rendering Techniques*, P. Shirley, G. Sakas, and S. Müller, eds., pp. 7-20, Berlin, Heidelberg, New York: Springer-Verlag, 1994.
- [8] G. Ward, "A Contrast-Based Scalefactor for Luminance Display," *Graphics Gems IV*, P. Heckbert, ed., pp. 415-421, Boston: Academic Press, 1994.
- [9] J.A. Ferwerda, S. Pattanaik, P. Shirley, and D.P. Greenberg, "A Model of Visual Adaptation for Realistic Image Synthesis," *SIGGRAPH '96 Conf. Proc.*, pp. 249-258, Aug. 1996.
- [10] G. Ward, H. Rushmeier, and C. Piatko, "A Visibility Matching Tone Reproduction Operator for High Dynamic Range Scenes," *IEEE Trans. Visualization and Computer Graphics*, vol. 3, no. 4, Oct.-Dec. 1997.
- [11] J. Tumblin, J.K. Hodgins, and B.K. Guenter, "Two Methods for Display of High Contrast Images," ACM Trans. Graphics, vol. 18, no. 1, pp. 56-94, 1999.
- [12] S.N. Pattanaik, J. Tumblin, H. Yee, and D.P. Greenberg, "Time-Dependent Visual Adaptation for Fast Realistic Display," *SIGGRAPH 2000 Conf. Proc.*, pp. 47-54, July 2000.
- [13] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, "Photographic Tone Reproduction for Digital Images," ACM Trans. Graphics, vol. 21, no. 3, pp. 267-276, 2002.
- [14] E. Reinhard, "Parameter Estimation for Photographic Tone Reproduction," J. Graphics Tools, vol. 7, no. 1, pp. 45-51, 2003.
- [15] F. Drago, K. Myszkowski, T. Annen, and N. Chiba, "Adaptive Logarithmic Mapping for Displaying High Contrast Scenes," *Computer Graphics Forum*, vol. 22, no. 3, 2003.
- [16] S.N. Pattanaik, J.A. Ferwerda, M.D. Fairchild, and D.P. Greenberg, "A Multiscale Model of Adaptation and Spatial Vision for Realistic Image Display," *SIGGRAPH '98 Conf. Proc.*, pp. 287-298, July 1998.
- [17] M. Ashikhmin, "A Tone Mapping Algorithm for High Contrast Images," Proc. 13th Eurographics Workshop Rendering, pp. 145-155, 2002.
- [18] F. Drago, W.L. Martens, K. Myszkowski, and N. Chiba, "Design of a Tone Mapping Operator for High Dynamic Range Images Based upon Psychophysical Evaluation and Preference Mapping," Proc. IS&T SPIE Electronic Imaging 2003. The Human Vision and Electronic Imaging VIII Conf., 2003.
- [19] F. Durand and J. Dorsey, "Fast Bilateral Filtering for the Display of High-Dynamic-Range Images," ACM Trans. Graphics, vol. 21, no. 3, pp. 257-266, 2002.
- [20] P. Choudhury and J. Tumblin, "The Trilateral Filter for High Contrast Images and Meshes," Proc. Eurographics Symp. Rendering, pp. 186-196, 2003.
- [21] R. Fattal, D. Lischinski, and M. Werman, "Gradient Domain High Dynamic Range Compression," ACM Trans. Graphics, vol. 21, no. 3, pp. 249-256, 2002.
- [22] J.E. Dowling, The Retina: An Approachable Part of the Brain. Harvard Univ. Press, 1987.
- [23] D.A. Baylor and M.G.F. Fuortes, "Electrical Responses of Single Cones in the Retina of the Turtle," J. Physiology, vol. 207, pp. 77-92, 1970.
- [24] J. Kleinschmidt and J.E. Dowling, "Intracellular Recordings from Gecko Photoreceptors during Light and Dark Adaptation," J gen Physiology, vol. 66, pp. 617-648, 1975.
- [25] K.I. Naka and W.A.H. Rushton, "S-Potentials from Luminosity Units in the Retina of Fish (Cyprinidae)," J. Physiology, vol. 185, pp. 587-599, 1966.
- [26] R.A. Normann and I. Perlman, "The Effects of Background Illumination on the Photoresponses of Red and Green Cones," *J. Physiology*, vol. 286, pp. 491-507, 1979.
- [27] M.D. Fairchild, Color Appearance Models. Reading, Mass.: Addison-Wesley, 1998.
- [28] N. Moroney, M.D. Fairchild, R.W.G. Hunt, C.J. Li, M.R. Luo, and T. Newman, "The CIECAM02 Color Appearance Model," Proc. IS&T 10th Color Imaging Conf., pp. 23-27, 2002.

- [29] Visual Perception: The Neurological Foundations, L. Spillmann and J.S. Werner, eds. San Diego, Calif.: Academic Press, 1990.
- [30] D.C. Hood, M.A. Finkelstein, and E. Buckingham, "Psychophysical Tests of Models of the Response Function," *Vision Research*, vol. 19, pp. 401-406, 1979.
- [31] B. Baxter, H. Ravindra, and R.A. Normann, "Changes in Lesion Detectability Caused by Light Adaptation in Retinal Photoreceptors," *Invest Radiology*, vol. 17, pp. 394-401, 1982.
 [32] K. Chiu, M. Herf, P. Shirley, S. Swamy, C. Wang, and K.
- [32] K. Chiu, M. Herf, P. Shirley, S. Swamy, C. Wang, and K. Zimmerman, "Spatially Nonuniform Scaling Functions for High Contrast Images," *Proc. Graphics Interface* '93, pp. 245-253, May 1993.
- [33] G. Wyszecki and W.S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, second ed. New York: John Wiley & Sons, 1982.
- [34] S.N. Pattanaik and H. Yee, "Adaptive Gain Control for High Dynamic Range Image Display," Proc. Spring Conf. Computer Graphics (SCCG2002), 2002.
- [35] G. Ward Larson and R.A. Shakespeare, *Rendering with Radiance*. Morgan Kaufmann, 1998.
- [36] M.D. Fairchild and G.M. Johnson, "Meet iCAM: An Image Color Appearance Model," Proc. IS&T/SID 10th Color Imaging Conf., pp. 33-38, 2002.
- [37] Practical Parallel Rendering, A. Chalmers, E. Reinhard, and T. Davis, eds. A.K. Peters, 2002.
- [38] R. Hunt, *The Reproduction of Color*, fifth ed. Fountain Press, 1996. [39] CIE, "The CIE 1997 Interim Colour Appearance Model (Simple
- [39] CIE, "The CIE 1997 Interim Colour Appearance Model (Simple Version), CIECAM97s,"CIE Publication 131, Vienna, 1998.
- [40] S. Daly, "The Visible Difference Predictor: An Algorithm for the Assessment of Image Fidelity," *Digital Images and Human Vision*, A.B. Watson, ed., pp. 179-206, MIT Press, 1993.
- [41] H. Rushmeier, G. Ward, C. Piatko, P. Sanders, and B. Rust, "Comparing Real and Synthetic Images: Some Ideas about Metrics," *Proc. Sixth Eurographics Workshop Rendering*, pp. 213-222, June 1995.
- [42] F. Drago, W.L. Martens, K. Myszkowski, and H.-P. Seidel, "Perceptual Evaluation of Tone Mapping Operators with Regard to Similarity and Preference," Technical Report MPI-I-2002-4-002, Max Plank Institut für Informatik, 2002.

Erik Reinhard received the BSc and the TWAIO diploma in computer science from Delft University of Technology and the PhD degree in computer science from the University of Bristol. He is an assistant professor at the University of Central Florida and has an interest in the fields of visual perception and parallel graphics. He was a postdoctoral researcher at the University of Utah. He is founder and co-editor-in-chief of the ACM Transactions on Applied Perception

and is currently writing a book on high dynamic range imaging. He is a member of the IEEE Computer Society.

Kate Devlin received the BA Hons. degree in archaeology, the MSc degree in computer science from Queen's University, Belfast, and the PhD degree in computer science from the University of Bristol. She is currently a post-doctorial researcher in the Department of Archaeology at the University of Bristol. Her interest is in the perceptually accurate rendering and display of synthetic images and its application to the field of archaeology.

For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/publications/dlib.