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Abstract—A common task in computer graphics is the mapping of digital high dynamic range images to low dynamic range display

devices such as monitors and printers. This task is similar to the adaptation processes which occur in the human visual system.

Physiological evidence suggests that adaptation already occurs in the photoreceptors, leading to a straightforward model that can be

easily adapted for tone reproduction. The result is a fast and practical algorithm for general use with intuitive user parameters that

control intensity, contrast, and level of chromatic adaptation, respectively.

Index Terms—Tone reproduction, dynamic range reduction, photoreceptor physiology.

�

1 INTRODUCTION

THE real world shows a vast range of light intensities
ranging from starlit scenes to white snow in sunlight.

Even within a single scene, the range of luminances can
span several orders of magnitude. This high dynamic range
within a single scene can easily be computed with computer
graphics techniques. They can also be captured using a
composition of multiple photographs of the same scene
with different exposures [1]. In the near future, high
dynamic range sensors will become generally available to
directly capture high dynamic range images. Furthermore,
the dynamic range of data captured with medical data
acquisition techniques and scientific simulations may be
arbitrarily high.

As a result, the availability of highdynamic rangedatawill
becomemuchmore commonplace than it is now. In contrast,
the dynamic range of display devices is currently limited and
economically sensible high dynamic range display devices
are not yet commonplace. Thismay change in the near future
as recent research has already produced a high dynamic
range display by combining LCD and LED technologies [2].
The dynamic range of printers, on the other hand,will remain
low. The mismatch between high dynamic range data
acquisition and high dynamic range display technology will
therefore persist in one form or another.

This leads to the problem of how to display high
dynamic range data on low dynamic range display devices,
a problem which is generally termed tone mapping or tone
reproduction [3], [4]. In principle, this problem is simple:
We need to turn an image with a large range of numbers
into an image containing integers in the range of 0 to 255
such that we can display it on a printer or a monitor. This
suggests linear scaling as a possible solution. However, this

approach is flawed because details in the light or dark areas
of the image will be lost due to subsequent quantization and
the displayed image will therefore not be perceived the
same as the scene that was photographed (Fig. 1).

Tone reproduction algorithms therefore attempt to scale
the high dynamic range data in such a way that the resulting
displayable image has preserved certain characteristics of the
input data, such as brightness, visibility, contrast, or appear-
ance. Algorithms can be classified into two broad categories:
global and local operators. Global operators compress
contrasts based on globally derived quantities, which may
include, for example, the minimum and maximum lumi-
nance or the average luminance. In particular, the log average
luminance is often computed to anchor the computation. The
compression algorithm then compresses pixel contrasts
according to a nonlinear function based on its luminance, as
well as those global variables.No other information is used to
modulate the compression curve [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15].

The shape of the compression curve is what differenti-
ates these global algorithms. While visual inspection of the
compression curves, i.e., the functions that map high
dynamic range luminances to display luminances, may
lead to the suggestion that most of these algorithms are very
similar in nature, we have found that small differences in
their functional form may lead to substantial differences in
visual appearance.

Global algorithms tend to be computationally efficient,
but may have distinct disadvantages. In particular, loss of
detail is often associated with global operators. The more
recent algorithms tend to exhibit fewer artifacts than earlier
attempts, however.

A distinguishing feature of local operators is their use of
neighboring pixels to derive the amount by which to
compress a pixel [13], [16], [17]. Local operators may show
haloing or ringing artifacts which indicate that, although
the principle may be valid, the calibration of these models is
critical and is often not well understood.

Tone reproduction operators may also be classified
based on whether they rely on models of human visual
perception or on mathematical or engineering principles.
Some tone reproduction operators use explicit perceptual
models to control the operator [6], [8], [9], [10], [11], [16],
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[17], [18] and, in particular, work on the assumption that
local spatial interaction is a key feature in dynamic range
reduction [16]. Other spatially varying operators have used
bi or trilateral filtering [19], [20] or compress the gradient of
an image followed by numerical integration [21].

The human visual system (HVS) successfully and
effortlessly overcomes dynamic range issues for a vast
range of intensities by using various adaptation mechan-
isms. In addition to the photoreceptors (rods and cones), the
retina contains additional types of cells, such as horizontal
and amacrine cells, providing lateral interconnectivity, and
bipolar and ganglion cells, giving distal connectivity [22].
Although this alone provides several loci where adaptation
may occur, a key observation is that all cells in the HVS
have a limited capability to produce graded potentials or
spike trains. By definition this includes the very first cells in
the chain of visual processing: the photoreceptors. Hence,
dynamic range reduction must already occur in the rods
and cones. Results from electro-physiology have confirmed
this [23], [24], [25], [26].

In this paper, we adapt a computational model of photo-
receptor behavior to help solve the tone reproduction
problem. The aim of this work is to provide a new global
tone reproduction operator that is fast and produces
plausible results that are useful in practical settings such
as high dynamic range photography. In addition, our model
operates independently on the three color channels and
incorporates a chromatic transform that allows the white
point to be shifted. These features that are also present in
most color appearance models [27], [28] go toward
correction for the mismatch between the display environ-
ment and the lighting conditions under which the image
was captured.

We believe that, for a large range of images, our method
combines the speed of global tone reproduction operators
with the ability to compress high dynamic range images as
well as or better than current operators.

While our method is grounded in results obtained from
electro-physiology, we do not present a full and complete
model of photoreceptor behavior because this would add
unnecessary complexity to the model. The dynamic range of
cells at various stages of visual processing may differ and
different adaptation mechanisms exist at different loci in the

human visual system [22]. We therefore do not aim to
present a complete model of the early stages of human
vision, but focus on the first step of visual processing—the
photoreceptors. This step is only modeled to the extent that
it allows the problem of tone reproduction to be addressed.
The model of visual processing employed here should
therefore not be seen as complete or even predictive for
human visual perception.

Also, we deviate from this model in certain areas to
increase the practical use of our algorithm. In particular, we
have fitted the model with four user parameters which
allow overall intensity, contrast, light, and chromatic
adaptation to be independently controlled. However, we
do show that initial estimates may be computed for these
parameters that provide results that, in most cases, require
only very small adjustments.

2 ALGORITHM

Various mechanisms in the HVS mediate adaptation to
lighting conditions. We specifically employ a model of
photoreceptor adaptation which can be described as the
receptors’ automatic adjustment to the general level of
illumination [24], [29]. The potential V produced by cones
as a function of intensity I may be modeled by [30]:

V ¼ I

I þ �ðIaÞ
Vmax

�ðIaÞ ¼ ðfIaÞm:
ð1Þ

These equations are a subtle but important deviation from
the more common Naka-Rushton equation [25] and are
derived by Hood et al. for reasons mentioned in their paper
[30]. The semisaturation constant �ðIaÞ describes the state of
long-term adaptation of the photoreceptor as a function of
adaptation level Ia. Both f and m are constants, but will be
treated as user parameters in our adaptation of the model.
Their values differ between studies, but, form, it is found to
lie between 0:2 and 0:9 [30]. The value of the multiplier f is
not discussed further by Hood et al., but we have found that
setting f ¼ 1 provides a useful initial estimate. The
maximum incremental response elicited by I is given by
Vmax, which we set to 1. One reasonable assumption made
for (1) is that the input signal is positive so that the output V
lies between 0 and 1.

The adaptation level Ia for a given photoreceptor can be
thought of as a function of the light intensities that this
photoreceptor has been exposed to in the recent past. If a
sequence of frames were available, we could compute Ia by
integration over time [12]. This approach may account for
the state of adaptation under varying lighting conditions.
However, even under stationary lighting conditions, sacca-
dic eye movements as well as ocular light scatter cause each
photoreceptor to be exposed to intensity fluctuations. The
effect of saccades and light scattering may be modeled by
computing Ia as a spatially weighted average [31].

Some previous tone reproduction operators that use
similar compression curves compute � by spatial integra-
tion [13], [17]. However, if � is based on a local average,
then, irrespective of the shape of the compression curve,
ringing artifacts may occur [32]. By carefully controlling the
spatial extent of �, these artifacts may be minimized [13],
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Fig. 1. Linear scaling of HDR data (inset) will cause many details to be

lost. Tone reproduction algorithms such as the technique described in

this paper attempt to solve this issue, in this case, recovering detail in

both light and dark areas as well as all areas in between.



[19]. We compare different choices of global and local
adaptation levels Ia in Section 4.

In practice, we may assume that each photoreceptor is
neither completely adapted to the intensity it is currently
exposed to nor is it adapted to the globally average scene
intensity, but, instead, is a mixture of the two. Rather than
compute an expensive spatially localized average for each
pixel, we propose to interpolate between the pixel intensity
and the average scene intensity. In the remainder of this
paper, we will use the term light adaptation for this
interpolation.

Similarly, a small cluster of photoreceptors may be
adapted to the spectrum of light it currently receives or it
may be adapted to the dominant spectrum in the scene. We
expect photoreceptors to be partially adapted to both. The
level of chromatic adaptation may thus be computed by
interpolating between the pixel’s red, green, and blue
values and its luminance value. By making the adaptation
level dependent on luminance only, no chromatic adapta-
tion will be applied, whereas keeping the three channels
separate for each pixel achieves von Kries-style color
correction [33].

We have found that, for most images, keeping all
channels fully dependent suffices, whereas using the pixel
intensity itself rather than the scene average produces better
compression. While, for most images, the setting of the
interpolation weights is not critical, for the purpose of
demonstrating the effect of different weights, we present an
atypical result in Fig. 2. Our default settings would result in
the image in the top right corner, which we deem overly
compressed. In our opinion, the image on the middle right
presents an attractive trade off between detail visibility and
contrast. The effect of manipulating the two interpolation
weights is generally smaller because most images have a
less pronounced color cast. Results shown in the remainder

of this paper will have the two interpolation weights set to
their default values unless indicated otherwise.

Finally, we note that we could simulate the effect of time
dependent adaptation for a still image by making the two
interpolation weights functions of time and creating a
sequence of images tonemapped with different interpola-
tion weights. We illustrate this in Fig. 3, where both weights
were incremented from 0 to 1 in steps of 0:2. Note that we
simultaneously achieve adaptation to luminance levels as
well as chromatic adaptation. The image on the right shows
more detail in both the dark and light areas, while, at the
same time, the yellow color cast is removed.

3 USER PARAMETERS

For certain applications, it may be important to have a tone
reproduction operator without any user parameters. Other
applications may benefit from a small amount of user
intervention, provided that the parameters are intuitive and
that the number of parameters is small. We provide an
intermediary solution by fitting the model with carefully
chosen user parameters that may be adjusted within a
sensible range of values. These parameters have an intuitive
effect on the resulting images so that parameter adjustment
involves as little guesswork as possible.

In addition, we provide initial estimates of these
parameters that produce plausible results for a wide variety
of images. This benefits applications that require fully
automatic tone reproduction and also creates reasonable
initial images that may be further modified by the user.

Two of the user parameters were introduced in the
previous section. These are m and f , which control contrast
and intensity, respectively. In this section, we discuss their
useful range of operation, as well as reasonable initial
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Fig. 2. Memorial church image, showing the effect of different methods to compute the adaptation luminance Ia. The values of the weights are varied

from 0 to 0:5 to 1. This image is a particularly good example to show this effect because it has a strong yellow color cast. For most images, the setting

of Ia is less critical and more benign.



estimates. We also provide further details for the parameters
that govern the level of chromatic and light adaptation.

Although the constant m has been determined for
specific experimental set-ups [30], we have found that its
value may be successfully adjusted based on the composi-
tion of the image. In particular, we make m dependent on
whether the image is high or low-key (i.e., overall light or
dark). The key k can be estimated from the log average, log
minimum, and log maximum luminance (Lav, Lmin, and
Lmax) [14]:

k ¼ ðLmax � LavÞ=ðLmax � LminÞ; ð2Þ

with luminance specified as:

L ¼ 0:2125 Ir þ 0:7154 Ig þ 0:0721 Ib: ð3Þ

We choose mapping the key k to the exponent m as follows:

m ¼ 0:3þ 0:7k1:4: ð4Þ

Thismapping is based on extensive experimentation andalso
brings the exponent within the range of values reported by
electro-physiological studies [30]. It was chosen for engineer-
ing purposes to make the algorithm practical for a wide
variety of input data. By anchoring the exponentm to the log
average luminance in relation to the log minimum and log
maximum luminance, themodel becomes robust in the sense
that the input data does not need to be calibrated in particular
units of measurement. This computation produces a reason-
able initial estimate for m, although sometimes images may
benefit from manual adjustment. We have found that the
range of operation for this parameter should be limited to the
range 0:3; 1½ Þ. Different values ofm result in different shapes
of the compression curve, as shown in Fig. 4 for a range of
values ofm. This plot was created by tonemapping an image
with a linear ramp between 10�3 and 103. For this ramp, the
exponent m would be initialized to a value of 0:493. This
parameter has a direct effect on the slope of the curve and,
thus, trades contrast in medium-intensity regions for detail
visibility in the dark and bright regions by becomingmore or
less “S”-shaped.

While the parameter f discussed above may be set to 1 as
an appropriate initial value, we allow f to be varied by the
user aswell. Although it is possible to set f directly, the range
of useful values is large and nonintuitive. We therefore
replace the multiplier f by an exponential function:

f ¼ expð�f 0Þ: ð5Þ

By changing the parameter f 0 the overall intensity of the
image may be altered; higher values will make the result
lighter, whereas lower values make the image darker. For
most images, the range of useful values of this parameter is
between �8 and 8, with an initial estimate of 0 (such that
f ¼ 1 as indicated in the previous section). The tone curve
follows a similar progression of shapes for different choices
of f 0 as seen for parameter m in Fig. 4. However, in practice,
the visual impact of this parameter is different from m and
we therefore keep both parameters.

We apply (1) to each of the red, green, and blue channels
independently because, in the HVS, different cone types do
not interact. However, it may be desirable to remove strong
color casts in the image, which can be achieved by
computing the adaptation level Ia for each of the red,
green, and blue channels as a weighted sum of the pixel’s
luminance L and the intensity value of the channel:

Ia ¼ cIrjgjb þ ð1� cÞL: ð6Þ

The amount of color correction is now controlled by the
weight factor c, which should be between 0 and 1. By setting
this user parameter to 1, the red, green, and blue color
channels are treated independently and this achieves color
correction in the spirit of a von Kries model [33]. By default,
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Fig. 3. Outdoor scene taken at dawn and indoor scene taken around midday, both with simulated time dependent adaptation. On the left, the

adaptation level Ia is computed from the average scene luminance, whereas, on the right, the adaptation level is computed using the independent

red, green, and blue components of each individual pixel.

Fig. 4. Mapping of input luminances (horizontal) to display luminances

(vertical) for different values of m.



wedo not apply chromatic adaptation by setting c ¼ 0 so that
the adaptation level is the same for all three color channels.

Similarly, in rare instances, we would like to control
whether the pixel adaptation is based on the pixel intensity
itself or on global averages:

Ia ¼ aIrjgjb þ ð1� aÞIavrjgjb: ð7Þ

Here, we use a second weight a which interpolates between

thepixel intensity Irjgjb and theaverage channel intensity Iavrjgjb.

For a value of a ¼ 1, adaptation is based on the pixel

intensity, whereas, for a ¼ 0, the adaptation is global. This

interpolation thus controls what we will refer to as light

adaptation. Its impact on the compression curve is shown in

Fig. 5 and, for comparison with other operators, in Fig. 6

(we discuss this comparison further in Section 4). As withm

and f 0, this parameter steers the shape of the compression

curve. Although this family of curves does not span a wide

range of shapes, its visual impact can be considerable, as

shown in Fig. 2. By default, we set a ¼ 1 to trade detail

visibility for contrast. These interpolation schemes may be

combined using bilinear interpolation, with Iavrjgjb and Lav

arithmetic averages (Fig. 2):

Ilocala ¼ cIrjgjb þ ð1� cÞL
Iglobala ¼ cIavrjgjb þ ð1� cÞLav

Ia ¼ aIlocala þ ð1� aÞIglobala :

For reference, Table 1 shows all user parameters, their

operating range as well as their initial estimates. In practice,

manipulating m and f 0 allows sufficiently fine control over

the appearanceof the tone-mapped image. In rare cases, c and

a need minor adjustments, too. All four parameters are set

onceper image,whereas Ia andV are computedper pixel and

per channel. After normalization of V , which typically

expands the range of values rather than compressing them

further, we set the display intensity to the photo-receptor

output V , making this a simple and fast global operator. The

normalization step was implemented by computing the

minimum and maximum luminance in the image. The R, G,

and B channels are then individually scaled using ðIrjgjb �
LminÞ=ðLmax � LminÞ and clipped to 0 and 1. In summary, the

source code of the full operator is given in Fig. 7.
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Fig. 5. Mapping of input luminances (horizontal) to display luminances

(vertical) for different values of our light adaptation parameter a.

Fig. 6. Mapping of input luminances (horizontal) to display luminances

(vertical) for various tone reproduction operators and parameter

settings.

TABLE 1
User Parameters

Fig. 7. Source code. Note that user parameter m is computed from

globally derived quantities unless the calling function specifies a value

for m.



4 RESULTS

In this section, we show the effect of manipulating the user

parameters m, f 0, a, and c on visual appearance and

compare our results with existing tone mapping operators

in terms of visual quality as well as computation time.
The images in Fig. 8 vary in the choice of parameters f 0

and m, with the middle image using default settings for all

parameters. Both f 0 and m may be modified beyond the
range shown in this figure.

While the operator is global because m is computed from
globally derived quantities, the method may be extended to
a local operator by setting the adaptation level Ia to a local
average of pixel intensities. Using their respective default
parameter settings, we experimented with two such local
operators, namely, bilateral filtering [19] and adaptive gain
control [34].
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Fig. 8. Clifton suspension bridge showing the effect of varying user parameter m between �0:2 of the default value, and the parameter f 0 which was

varied between �2:0 and 2:0. The enlarged image in the middle was created using our default parameter settings.

Fig. 9. Rosette and sunset images comparing local and global versions of our operator.



Fig. 9 shows that our global operator performs almost as

well as bilateral filtering as applied to our operator. In our

opinion, bilateral filtering causes no artifacts due to its

ability to avoid filtering across high contrast edges.

However, the advantage of applying bilateral filtering to

our operator is relatively modest, judging by the visual

difference between our global operator and our local

operator using bilateral filtering. This observation does

not necessarily extrapolate to other tone reproduction

operators that may benefit from bilateral filtering.
The effect of applying adaptive gain control is more

pronounced. While bilateral filtering applies a (Gaussian)

weight in both the spatial as well as the intensity domain,

adaptive gain control only filters pixels in the intensity

domain [34]. We believe that, for this reason, adaptive gain

control has a somewhat cruder visual appearance. However,

this approach has also increased the contrast of the image,
which may be desirable for certain applications.

One of the more difficult images to tonemap is the
“desk” image, shown in Fig. 10. Because it is impossible to
know how light or dark the image should be displayed to be
faithful to the original photograph, we contacted the
photographer to discuss and calibrate our result. For the
desk image, as a general rule of thumb, the dark area
underneath the desk should be quite dark, but some details
are visible. In the real scene, it was difficult to distinguish
details of the bag on the left. The highlight in front of the
book should appear bright. The text on the book should be
visible and the light bulb should be distinguishable from
the lamp shade. Note that this image has a fairly strong
color cast, which we chose to remove by setting c ¼ 1.

In the parking garage in Fig. 11, the foreground should
be fairly dark, with visible detail, and the area outside
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Fig. 10. Desk image.



should be bright and is also showing detail. Timing results
are given in Table 2 and were obtained using a 2:53 GHz
Pentium 4 CPU.

For each of the algorithms in our comparison, we
manipulated the user parameters to show the details in
both the light as well as the dark areas as well as possible.
While this may not be in keeping with the intent of each of
the operators, our aim is to provide a practical and useful
operator. The fairest comparison possible is therefore one
where the parameters for each method are optimized to
produce the visually most pleasing results. This optimiza-
tion is by its nature subjective. We applied gamma
correction to all images afterward (� ¼ 1:6). The methods
we compare against are:

Logarithmic compression. In this algorithm, we take the
logarithm and apply a linear shift and scale operation to

bring the data within displayable range. This operator is
included because it is one of the most straightforward
techniques that produces a baseline result against which all
other operators may be compared.

Adaptive logarithmic mapping. This global tone map-
ping algorithm logarithmically compresses each pixel, but
the base of the logarithm is chosen for each pixel separately
according to a bias function [15].

Bi and trilateral filtering. Here, we applied the bilateral
filter as it was originally presented [19]. The method
separates the image into a high dynamic range base layer
and a low dynamic range detail layer with the aid of a
bilateral filter which has the desirable property that the
image is blurred without blurring across sharp edges. The
base layer is then compressed, shifted, and recombined
with the detail layer. The two user parameters for this
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Fig. 11. Parking garage.



method are shifting and scaling of the base layer. We also
compare against the trilateral filter, which is an extension of
bilateral filtering [20].

Histogram adjustment. Histogram adjustment is a fast
and widely used technique which produces good results for
a large class of images [10]. We did not include the optional
veiling luminance, color sensitivity, and visual acuity
techniques to promote a fair comparison, but used the
pcond program from the Radiance package [35] with no
parameters.

Photographic tone-mapping. Photographic tone repro-
duction may be executed as a global as well as a local
operator [13]. We used a parameter estimation technique to
find the appropriate settings for each image [14].

Ashikhmin’s operator. This is a local operator based on
human visual perception [17]. For each pixel, a local
adaptation level is computed in a manner similar to the
local photographic tone mapping operator. There are no
user parameters.

Time-dependent adaptation. This algorithm is a sigmoid
using the original Naka/Rushton equation [25] with a fixed
semisaturation constant. Although the algorithm was
originally presented to explore time-dependent adaptation
[12], we have adapted the algorithm for still images with
help from the author. This algorithm assumes that the input
is given in cd=m2. Because the units used for the images are
unknown, this leaves two parameters to be set manually to
convert the image roughly to SI units. It should be noted
that, for the work on time-dependent adaptation, this
operator was applied to sequences of low dynamic range
images. Similar compression curves were also used for high
dynamic range compression, but then the adaptation was
local [34], not global as the results shown here. As such, the
images shown for this operator are not directly comparable
to the results obtained by Pattanaik et al. [12], [34].

Revised Tumblin-Rushmeier. This global operator is
essentially a power-law based on psychophysical data [11].
Like the previous method, the algorithm is calibrated in
cd=m2. We linearly scaled the input data and normalized
the output afterward to produce what we believe the best
possible results for this method in a practical setting.

Uniform rational quantization. This is another early
operator which produces plausible results for many images
[7]. The user parameter M was manipulated per image to
produce reasonable results.

The images shown in Figs. 10, 11, 12, and 13 are fairly
typical. In general, global operators tend to either appear
washed-out or lose visible detail in the dark and/or light
areas. Local operators tend to show the details better, but
frequently do this at the cost of ringing or haloing artifacts. In
our opinion, the method presented in this paper produces
sensible resultswithoutobviousartifacts. It alsoallowsstrong
color-casts to be removed should that be desirable.

With the exception of the iCAM color appearance model,
which addresses color fidelity in the context of high
dynamic range data compression [36], the issue of color
fidelity in tone reproduction has not received a great deal of
attention. Many tone reproduction operators only compress
the luminance channel and apply the result to the three
color channels in such a way that the color ratios before and
after compression are preserved [7]. Fattal et al. [21] build
upon this tradition by introducing an exponent s to control
saturation. For the red channel, the display intensity Rd is
then a function of the input intensity Rw, the pixel’s
luminance before and after compression (Lw and Ld,
respectively): Rd ¼ Ld Rw=Lwð Þs. The green and blue chan-
nels are processed analogously. This is a reasonable first
step, but ignores the fact that color appearance varies with
the overall intensity of the scene [27]. While our method
does not address this issue either, in the absence of a
satisfactory solution, we prefer to provide the user with
control over the amount of chromatic adaptation.

Our comparison is by no means exhaustive. There are
manymore research images available, as well as further tone
reproduction techniques that we have not mentioned.
However, we do believe that the above comparison is
indicative of the results one may expect from various tone
reproduction operators, including the one presented in this
paper.

While sigmoidal mapping functions are employed by
others to describe aspects of vision [25], [30] and were later
used in the field of tone reproduction [12], [34], [37] and
color appearance modeling [28], [38], [39], we believe that
its successful use in engineering applications strongly
depends on the appropriate selection of tuning parameters.
We have provided sufficient tools to shape the sigmoidal
curve to suit most high dynamic range imagery.

We compare response curves for a ¼ 0 and a ¼ 1 with
various other tone reproduction operators in Fig. 6. All
graphs are normalized in this figure. The parameterM used
in uniform rational quantization allows the mapping of
middle gray to be adjusted. The factor f for the Tumblin
and Rushmeier’s operator denotes a prescaling factor we
introduce to convert the input into SI units.

While the shape of our curves depend on the average
luminance in relation to the minimum and maximum
luminance (compare with Figs. 4 and 5), a general
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TABLE 2
Computation Times in Seconds for the Desk Image

(1; 536� 1; 024 Pixels) and Garage Image (748� 492 Pixels)
(See Also Figs. 10 and 11)

*Optimizations as applied to the bilateral filer [19] could also be applied
to the trilateral filter, which would reduce the computation time by at
least an order of magnitude. Our code, based on the implementations
made available by the authors, does not incoporate these optimizations.



observation is that our curve shows a less pronounced
shoulder than either uniform rational quantization [7] or
photographic tone reproduction [13], but more so than
Tumblin-Rushmeier’s operator [11].

5 DISCUSSION

We envision tone reproduction operators to be used
predominantly by photographers as well as in other artistic
applications. It is therefore our aim to present a generally
applicable operator that is fast and practical to use and
provides intuitive user parameters. We used findings from
electro-physiology to motivate the design of our algorithm,
but made engineering-based design decisions where appro-
priate. Experimentation with bilateral filtering and adaptive
gain control techniques showed that the visual quality of
our spatially varying operator is only marginally better than

for our global operator. We therefore believe that, for most

practical applications, our fast global operator will suffice.
There are many criteria one might apply to compare

qualitative results [40], [41]. For instance, one could

measure how well details are preserved or how well the

method models certain aspects of the human visual system.

These are all worthwhile criteria, but they also assume that

tone reproduction operators will be used for specific

applications, such as perhaps explaining visual phenomena.

Validation of tone reproduction operators for specific tasks

is a very necessary avenue of research that has yet to

mature, although insight into this matter is beginning to

accumulate [42]. For this reason, and because we aim for

general applicability, we have used visual comparison to

show qualitative results.
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Fig. 12. Grove image.



In the absence of straightforward validation techniques,

judgment of operators is currently a matter of taste. In our

opinion, the global operator presented in this paper produces

visually appealingoutput for awidevariety of input. It shares

speed-advantages with other global operators while com-

pressing images with a quality that, in our opinion, rivals

local operators, albeit without any ringing artifacts. The

method has four user parameters, each with sensible initial

estimates that orthogonally control contrast, overall intensity,

light, and chromatic adaptation, yielding a tone reproduction

operator that is fast, easy to use, and suitable for applications

whereplausible results are themain criterion for selectionof a

particular technique.We therefore believe that this algorithm

will be a useful addition to the current collection of tone

reproduction operators.
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