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Non-Iterative, Robust Monte Carlo Noise 
Reduction 

Ruifeng Xu, Sumanta N. Pattanaik, Member, IEEE 

Abstract— A novel Monte Carlo noise reduction operator is proposed in this paper. We apply and extend the standard bilateral filtering 
method and build a new local adaptive noise reduction kernel. It first computes the initial estimate of each pixel, and then applies bilateral 
filtering using this initial estimate in its range filtering kernel. It is simple both in formulation and implementation. The new operator is robust 
and fast in the sense that it can suppress the outliers, as well as the inter-pixel incoherence in a non-iterative way. It can be easily integrated 
into existing rendering systems, and such a framework is shown in this paper. The results of our approach are compared with those of other 
methods. A GPU implementation of our algorithm runs in 500ms for a 512×512 image. 

Index Terms— Monte Carlo method, noise reduction, bilateral filtering, global illumination, image processing.  
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1 INTRODUCTION  
omputing accurate global illumination is one of the most 
challenging tasks the computer graphics field. Its diffi-
culty comes from the complexity of the rendering equa-

tion [Kajiya 1986]. Monte Carlo method is a major method 
used to solve this equation. Although it is powerful enough to 
compute all global illumination effects, too much rendering 
time is required to accurately render a typical scene. Limited 
rendering time often brings about a particular artifact in the 
final rendered image, known as Monte Carlo noise. 

An alternative way for high quality Monte Carlo rendering 
is to render images at low sampling density, and then denoise 
them in a post-processing stage. Although a classic image 
noise reduction algorithm can be used to reduce this particu-
lar type of noise, a naive application is not always very effec-
tive. So, a lot of work has been devoted to carry out effective 
and efficient post-processing of Monte Carlo noise [Lee 1990; 
Rushmeier 1994; Jensen 1995; Tamstorf 1997; McCool 1999]. A 
comprehensive account of this literature is given in [McCool 
1999]. 

Rushmeier et al. [1994] considered the Monte Carlo noise as 
“outliers”, and used an energy-preserving non-linear filter to 
suppress these outliers. Jensen et al. [1995] found that most 
Monte Carlo noise appeared in images as inter-pixel incoher-
ence, and attempted to reduce it by using classical image de-
noising algorithms, like median filtering. 

Of the noise removal techniques, anisotropic diffusion 
[McCool 1999] is the most relevant to our work. It reduces the 
inter-pixel incoherence by applying an anisotropic diffusion 
algorithm to the pixel value. The denoising results look im-
pressing. But, this approach is sensitive to outliers. It is also 
very slow because of its iterative nature.  

It is now clear that Monte Carlo noise appears both as out-
liers and as inter-pixel incoherence in a typical image ren-
dered at low sampling density [Jensen 1995; Lee 1990; McCool 

1999; Rushmeier 1994]. Unfortunately, none of previous ap-
proaches can reduce both types of noise in a unified way. In 
this paper, we propose such a unified Monte Carlo noise re-
duction approach to suppress both outliers and inter-pixel 
incoherence, using bilateral filtering [Tomasi 1998]. 

Inspiration and Our Contribution 
Our work is inspired by the work of [Tomasi 1998], where 
Bilateral Filtering is proposed to filter gray and color images. 
It has the property of smoothing images while keeping the 
edges undisturbed. [Durand 2002] and [Jones 2003] related it 
to Robust Statistics, and built an estimator using bilateral filter, 
which is expected to be robust in the presence of outliers or 
larger deviation from a theoretical distribution. Bilateral filter-
ing is already successfully applied to image filtering [Tomasi 
1998], image denoising [Elad 2002a; Elad 2002b], mesh 
smoothing and denoising [Jones 2003; Fleishman 2003]. A 
theoretic analysis is presented in [Barash 2001]. The principle 
of bilateral filtering is simple. It combines the domain filtering 
and range filtering, as shown in Equation 1. 
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where, )(xh  is the estimator of the current pixel x , )(xf  is the 
current pixel value of x  and )(ξf  is the pixel value of its 
neighbor(s) ξ , and ),( xc ξ  and ),( xffs ξ  are the domain fil-
ters and range filter kernels. They are often modeled as Gaus-
sian functions with parameters 

dr σσ ,  respectively, as shown 
in Equation 2. 
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If some neighbor ξ  is an outlier, it has a much larger or much 
smaller value ξf  than that of the central point x . Its contribu-
tion to the estimator )(xh  will be greatly reduced by the range 
filter ),( xffs ξ , which favors similar range values rather than 
disparate values. Bilateral filter is a robust local adaptive filter, 
which can be used to enhance image coherence. However, as 
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illustrated in Figure 2, it cannot be directly used to suppress 
the outliers of Monte Carlo noise. And in the next section, we 
show that the original bilateral filtering is not as robust as 
claimed in [Durand 2002; Jones 2003]. We extend the standard 
bilateral filtering to handle outliers and inter-pixel incoher-
ence in a unified framework. Our contributions are: 

• Application of bilateral filtering to Monte Carlo noise 
reduction. 

• Extension of bilateral filtering with an initial estimation 
preprocess. 

The rest of the paper is organized as follows. Section 2 pre-
sents our Monte Carlo noise operator developed from bilateral 
filtering. Section 3 describes a denoising framework, which 
can be easily integrated into existing rendering system. Ex-
perimental results and analysis are given in the last two sec-
tions. 

2 MONTECARLO NOISE REDUCTION OPERATOR 
The outliers in Monte Carlo noise are singular pixels with 
much larger or much smaller values than its neighbors. It is 
desirable to remove them together with intra-region incoher-
ence while keeping edges undisturbed. A Gaussian filter will 
blur the edges, and therefore anisotropic diffusion is intro-
duced to suppress intra-region incoherence while keeping 
edges intact [McCool 1999]. Standard bilateral filter can do the 
same thing as anisotropic diffusion, but it, as well as anisot-
ropic diffusion, can’t effectively remove the outliers, as shown 
in Figure 2. This is because the initial estimator )(xf  used in 

),( xffs ξ
 is far different from its true value, and very little con-

tribution to its estimator comes from such neighbors due to 
the infinitesimal weights returned by the range function. 
Thus, the outliers remain almost unchanged. And they are 
neither suppressed, nor do they contribute to their neighbors. 
The outliers will remain there after applying standard bilateral 
filtering, as shown in Figures 2(b), (c). Fortunately, standard 
bilateral filter is ready to be extended to suppress both outliers 
and intra-region incoherence while keeping edges intact. We 
propose to employ an initial near-true estimator )(

~
xf  to re-

place )(xf , and make use of Equation 3 as our new Monte 
Carlo noise reduction operator. Note we use )(ˆ xf  to re-
place )(xh  for convenience, denoting the new estimator using 
bilateral filtering around point x . 
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There are various possible options for )(
~

xf , such as mean 
value around pixel x , or median value around pixel x . From 
our experiment, we find that Gaussian filtered value (shown 
in Equation 4) performs best in dealing with Monte Carlo 
noise.  
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Our experimental results in Figure 2 show that results using our 
extension to bilateral filtering. Figure 2 shows the denoising of 
“living room” (see http://radsite.lbl.gov/) using original bilat-
eral filtering, iterative bilateral filtering, and our bilateral filtering 
extension. The Gaussian parameters used in all the cases are the 
same: 4.0,0.2 == dr σσ . Standard bilateral filtering (Figure 2(b)) is 

almost ineffective in reducing Monte Carlo noise. In Figure 2(c), 

the bilateral filtering is iterated 20 times [Elad 2002a], and the 
incoherence inside regions are well suppressed, but the outliers 
remains unchanged.  

(a) 

(b) 

(c) 

(d) 
Figure 2. Outliers Reduction using Bilateral Filtering. (a) Noisy image; (b) 
Standard bilateral filtering; (c) Iterative bilateral filtering used in [Elad 
2002] 20 iterations. (d) Our new bilateral filtering operator. 

Notice the outliers on the window of Figure 2(c). No matter 
how many bilateral filtering iterations are applied, they never 
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disappear. It shows that the standard bilateral filter is not so 
robust in suppressing outliers! Figure 2(d) shows the success 
of our extension to bilateral filtering. Our Monte Carlo noise 
reduction operator can also be used to reduce other types of 
noise than Monte Carlo noise. 

Numerical formulation 
Equations 3 and 4 are evaluated numerically. As the weight 
function is very small when farther than 

dσ3  away from the 
central pixel ( 012.02/9))(2/()3( 22

<= −− ee dd σσ ), we select a 
square window around the current pixel with size 

dd σσ 66 ×  as 
the neighborhood window. The discrete version of the equa-
tions in this window is shown in Equations 5 and 6. 
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∑ ∑

∑ ∑

−= −=

−= −=

++
=

d

d

d

d

d

d

d

d

u v

u v

vuc

vucvjuif

jif σ

σ

σ

σ

σ

σ

σ

σ
3

3

3

3

3

3

3

3

),(

),(),(

),(
~

        (6) 

Our computation first finds the initial estimated value 
),(

~
jif for each pixel. Then, a bilateral filtering step is executed 

using ),(
~

jif . It is a non-iterative process, and the computa-
tion is fast. The denoising effects are greatly enhanced by a 
single additional initial estimate step, as shown Figure 2(d). 
The pseudocode can be briefly described in Figure 3. The whole 
process is a loop over each pixel, where the range filter is first 
contructed using parameter 

rσ  and initial estimator f
~ , and then 

is convolved with original image )( pI  and domain fitler to ob-
tain the bilateral filter estimator f̂ . 

3 DENOISING FRAMEWORK 

As described by Jensen [Jensen 1995], most of the noise arises 
from computing diffuse inter-reflection (indirect component) using 
Monte Carlo methods. The contribution from direct illumination 
and specular inter-reflection (direct component) carries little noise. 
We follow this observation, and denoise only the indirect compo-
nent. The denoised indirect component is then added to the direct 
component for the final denoising result. The direct and indirect 
components are easily separated, by adding only a few lines into 
the Monte Carlo renderer. The whole denoising process is briefly 
shown in Figure 4. 

Our denoising framework can be easily integrated to the render-
ing pipeline as a post-processing stage. The indirect and direct 
components are outputs of rendering processes. After denoising 
(see Figure 3 for an overview of the denoising algorithn), it is sent 
to other stages for further processing, like tone mapping, storage, 
or displaying. With our denoising technique, the Monte Carlo 
renderer can use low sampling rates for fast quality image. 

 

Indirect
component

Direct component

De-noised indirect
component

Rendering

Rendering

De-noising

+ Orther
processing

 
Figure 2: Our denoising Framework 

 
 

Algorithm MC-denoising  
Construct domain filtering kernel c with 

dσ ; 
cIf ∗=~

 /*convolution for initial estimator*/ 
For each pixel p 
     Construct range filtering kernel s with 

fr

~
,σ ; 

     sc ∗=κ   
              /*combine domain and range filters*/ 
     κκκ =  /*normalization*/ 
    κ∗= )(ˆ pIf ; 
     Set pixel p with estimator f̂ ; 

Figure 3: Pseudocode of our algorithm.  

4 EXPERIMENTAL RESULTS 
We have implemented our denoising algorithm in C. The di-
rect and indirect components are obtained by adding several 
lines of code to “rpict” in Radiance (see http://radsite.lbl.gov/) 
to save the direct and indirect components separately.  

Monte Carlo noise has several ways to contaminate the 
pixel color, e.g., hue and luminance. We take the approach 
followed by [Rushmeier 1994] and [McCool 1999], i.e., lumi-
nance is most likely contaminated. We use the luminance 
computation formula in Radiance [Ward 1996], as shown in 
Equation 7.  

BGRBGRI *065.0*670.0*265.0),,( ++=  (7) 
Our denoising results also show that luminance carries 

most Monte Carlo noise. It is worth mentioning that we carry 
out Monte Carlo noise reduction in the logarithm domain of 
the luminance channel. This is because the human eye has a 
linear response to the logarithm of pixel luminance value. 

Figures 5 and 6 show two denoising examples using our 
Monte Carlo noise reduction operator. More explaination can 
be found in the title of Figure 6. 

Figure 7 lists time to generate the images in Figures 2,5 and 
6. Our experimental platform is a Celeron 2.0GHz (392M 
memory, Windows2000). The numbers in parentheses are 
sampling rate. In each cell of column 2 and 3, the numbers on 
the second line are the MSE. The denoising time is only a 
small fraction of the noisy image rendering time, and the time 
complexity of our denoising algorithm is O(n) in most cases, 
where n is pixel number of the noisy image. We can see much 
time is saved for quality rendered images using our Monte 
Carlo noise reduction method, compared to merely improving 
sampling rate. The C source code and executable are available 
at http://www.cs.ucf.edu/~rxu/mcnr/mcnrBiFilter.c and 
http://www.cs.ucf.edu/~rxu/mcnr/mcnrBiFilter.exe.
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(a) 

 
(b) 

 
(c) 

Figure 5: Denoising of “conference room” image. (b) is the denoised 
result of (a) (5 samples), which is very similar to the accurate result 
(c)(400 samples). 

 

 

Figure 6: Some results of our Monte Carlo noise reduction operator 
on “cabin”. (a)-(i) shows the whole denoising process for “cabin” im-
age. (a) and (b) are the direct and indirect components of (c). (b) is 
denoised using our method to obtain (d). And (e) is the denoising 
result by adding up (a) and (d). For comparison, we also show the 
denoising result (f) using standard bilateral filtering, (g) using Wiener 
filtering, and the accurate image using 300 samples (setting ad=300 
in “rpict”). (i) shows clips of the right window on image (e),(f),(g), from 
top to bottom. It is apparent that the outliers are removed in (e), but 
remains in (f), (g). The models of the scene used to generate the 
images are courtesy of Ward (see http://radsite.lbl.gov/)

 

 
(a) direct component                      (b) indirect component  

 
(c) noisy, 20 samples                    (d) denoised indirect  

     
(d) denoised indirect                     (e) our method               

 
(f) standard bilateral filtering        (g) Wiener filtering 

(i) clips from (e), (f) and (g)  
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 noisy denoised accurate dr σσ ,  

Living room 

400×300 

50s(2) 

0.152 

5.0s 

0.089 

2100s 

(500) 

2, 0.4 

Cabin 
512×512 

286s(20) 
.3630 

9.8s 
.2202 

3602s 
(300) 

2, 0.4 

Conf.  room 
512×347 

183s(5) 
.0312 

6.5s 
.0275 

1802s 
(400) 

2, 0.4 

Figure 7: Statistics data. (Note: numbers in parentheses denote the 
sampling rate.) 

We use mean least square (MSE) as a simple fidelity 
metric to confirm the relative image quality between 
coarsely rendered image and denoised image. The com-
parision basis is the same image rendered at very high 
quality. The MSE measurement is performed using the 
logarithm of the luminance value, as shown in Equation 7. 
The larger the MSE, the noisier the image. For the “confer-
ence room” in Figure 5, MSE of (a) and (b) with respect to 
(c) is 0.0312 and 0.0275, respectively. And in Figure 6, MSE 
of (c) and (e) with respect to (h) is 0.3630 and 0.2202, re-
spectively. Our denoising algorithm does improve the im-
age quality by reducing the MSE. 

Parameters Setting 
There are two parameters involved in our algorithm:

dr σσ ,  
for domain and range filters. Automatic estimation of 
these bilateral filtering parameters remains a problem, 
although there are some related efforts toward this prob-
lem [Jones 2003]. Fortunately, we find 4.0,2 == dr σσ  are 
appropriate for most cases of Monte Carlo noise reduction, 
and we used 4.0,2 == dr σσ  in all of our experiments in 
this paper. 

Although these parameters are only testified through 
experiments, we believe they are closely related to some 
aspects of human perception including spatial vision and 
color discrimination. A theoretical derivation is possible 
and we leave it for further study.  

5 CONCLUSIONS AND FUTURE WORK 
We propose a non-iterative local adaptive filter based on 
bilateral filtering for Monte Carlo noise reduction. Unlike 
other Monte Carlo reduction methods, our approach is 
able to suppress outliers and inter-pixel incoherence in a 
unified framework. It can also be used in other denoising 
tasks, like mesh denoising, where outliers and inside-
region incoherence coexist.  A standard bilateral filtering is 
enough in cases where only inside-region incoherence 
needs to be reduced. 

The strengths of our method lie in its simplicity, robust-
ness and efficiency. It reduces both types of noise in only 
two passes. The method can be easily adapted to parallel 
implementation, as well as stream processor implementa-
tion. We implemented the latter on an ATI RADEON 9700 
graphics card, which can execute the denoising in real-
time. For the “cabin” image in Figure 5, our GPU imple-
mentation runs at no less than 2 fps. 

This method requires only two parameters, and 

4.0,2 == dr σσ  can be used in most cases of Monte Carlo 
noise reduction, although further tuning is possible. Theo-
retical derivation of these parameters is one future re-
search topic. 
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