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Non-lterative, Robust Monte Carlo Noise
Reduction

Ruifeng Xu, Sumanta N. Pattanaik, Member, IEEE

Abstract— A novel Monte Carlo noise reduction operator is proposed in this paper. We apply and extend the standard bilateral filtering
method and build a new local adaptive noise reduction kernel. It first computes the initial estimate of each pixel, and then applies bilateral
filtering using this initial estimate in its range filtering kernel. It is simple both in formulation and implementation. The new operator is robust
and fast in the sense that it can suppress the outliers, as well as the inter-pixel incoherence in a non-iterative way. It can be easily integrated
into existing rendering systems, and such a framework is shown in this paper. The results of our approach are compared with those of other
methods. A GPU implementation of our algorithm runs in 500ms for a 512x512 image.

Index Terms— Monte Carlo method, noise reduction, bilateral filtering, global illumination, image processing.

1 INTRODUCTION

Computing accurate global illumination is one of the most
challenging tasks the computer graphics field. Its diffi-

culty comes from the complexity of the rendering equa-
tion [Kajiya 1986]. Monte Carlo method is a major method
used to solve this equation. Although it is powerful enough to
compute all global illumination effects, too much rendering
time is required to accurately render a typical scene. Limited
rendering time often brings about a particular artifact in the
final rendered image, known as Monte Carlo noise.

An alternative way for high quality Monte Carlo rendering
is to render images at low sampling density, and then denoise
them in a post-processing stage. Although a classic image
noise reduction algorithm can be used to reduce this particu-
lar type of noise, a naive application is not always very effec-
tive. So, a lot of work has been devoted to carry out effective
and efficient post-processing of Monte Carlo noise [Lee 1990;
Rushmeier 1994; Jensen 1995; Tamstorf 1997; McCool 1999]. A
comprehensive account of this literature is given in [McCool
1999].

Rushmeier et al. [1994] considered the Monte Carlo noise as
“outliers”, and used an energy-preserving non-linear filter to
suppress these outliers. Jensen et al. [1995] found that most
Monte Carlo noise appeared in images as inter-pixel incoher-
ence, and attempted to reduce it by using classical image de-
noising algorithms, like median filtering.

Of the noise removal techniques, anisotropic diffusion
[McCool 1999] is the most relevant to our work. It reduces the
inter-pixel incoherence by applying an anisotropic diffusion
algorithm to the pixel value. The denoising results look im-
pressing. But, this approach is sensitive to outliers. It is also
very slow because of its iterative nature.

It is now clear that Monte Carlo noise appears both as out-
liers and as inter-pixel incoherence in a typical image ren-
dered at low sampling density [Jensen 1995; Lee 1990; McCool
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1999; Rushmeier 1994]. Unfortunately, none of previous ap-
proaches can reduce both types of noise in a unified way. In
this paper, we propose such a unified Monte Carlo noise re-
duction approach to suppress both outliers and inter-pixel
incoherence, using bilateral filtering [Tomasi 1998].

Inspiration and Our Contribution

Our work is inspired by the work of [Tomasi 1998], where
Bilateral Filtering is proposed to filter gray and color images.
It has the property of smoothing images while keeping the
edges undisturbed. [Durand 2002] and [Jones 2003] related it
to Robust Statistics, and built an estimator using bilateral filter,
which is expected to be robust in the presence of outliers or
larger deviation from a theoretical distribution. Bilateral filter-
ing is already successfully applied to image filtering [Tomasi
1998], image denoising [Elad 2002a; Elad 2002b], mesh
smoothing and denoising [Jones 2003; Fleishman 2003]. A
theoretic analysis is presented in [Barash 2001]. The principle
of bilateral filtering is simple. It combines the domain filtering
and range filtering, as shown in Equation 1.
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where, h(x) is the estimator of the current pixel X, f(x) isthe
current pixel value of X and f(£) is the pixel value of its
neighbor(s) ¢, and c(£,x) and s( f., f,) are the domain fil-
ters and range filter kernels. They are often modeled as Gaus-
sian functions with parameters 0,,0, respectively, as shown
in Equation 2.
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If some neighbor ¢ is an outlier, it has a much larger or much
smaller value f. than that of the central point x. Its contribu-
tion to the estimator h(x) will be greatly reduced by the range
filter s( fg, f) which favors similar range values rather than
disparate values. Bilateral filter is a robust local adaptive filter,
which can be used to enhance image coherence. However, as
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illustrated in Figure 2, it cannot be directly used to suppress
the outliers of Monte Carlo noise. And in the next section, we
show that the original bilateral filtering is not as robust as
claimed in [Durand 2002; Jones 2003]. We extend the standard
bilateral filtering to handle outliers and inter-pixel incoher-
ence in a unified framework. Our contributions are:
o Application of bilateral filtering to Monte Carlo noise
reduction.
o Extension of bilateral filtering with an initial estimation
preprocess.
The rest of the paper is organized as follows. Section 2 pre-
sents our Monte Carlo noise operator developed from bilateral
filtering. Section 3 describes a denoising framework, which
can be easily integrated into existing rendering system. Ex-
perimental results and analysis are given in the last two sec-
tions.

2 MONTECARLO NOISE REDUCTION OPERATOR

The outliers in Monte Carlo noise are singular pixels with
much larger or much smaller values than its neighbors. It is
desirable to remove them together with intra-region incoher-
ence while keeping edges undisturbed. A Gaussian filter will
blur the edges, and therefore anisotropic diffusion is intro-
duced to suppress intra-region incoherence while keeping
edges intact [McCool 1999]. Standard bilateral filter can do the
same thing as anisotropic diffusion, but it, as well as anisot-
ropic diffusion, can’t effectively remove the outliers, as shown
in Figure 2. This is because the initial estimator f(x) used in
s(f;, f,) is far different from its true value, and very little con-
tribution to its estimator comes from such neighbors due to
the infinitesimal weights returned by the range function.
Thus, the outliers remain almost unchanged. And they are
neither suppressed, nor do they contribute to their neighbors.
The outliers will remain there after applying standard bilateral
filtering, as shown in Figures 2(b), (c). Fortunately, standard
bilateral filter is ready to be extended to suppress both outliers
and intra-region incoherence while keeping edges intact. We
propose to employ an initial near-true estimator f~(x) to re-
place f (x), and make use of Equation 3 as our new Monte
Carlo noise reduction operator. Note we use f(x) to re-
place h(x) for convenience, denoting the new estimator using
bilateral filtering around point x.
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There are various possible options for f(x), such as mean

value around pixel x, or median value around pixel x. From

our experiment, we find that Gaussian filtered value (shown

in Equation 4) performs best in dealing with Monte Carlo
noise.
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Our experimental results in Figure 2 show that results using our
extension to bilateral filtering. Figure 2 shows the denoising of
“living room” (see http://radsite.lbl.gov/) using origina bilat-
eral filtering, iterative bilateral filtering, and our bilateral filtering
extension. The Gaussian parameters used in all the cases are the
SaMmel g, = 2.0,0, =0.4- Standard bilateral filtering (Figure 2(b)) is

almost ineffective in reducing Monte Carlo noise. In Figure 2(c),
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the bilateral filtering is iterated 20 times [Elad 20024], and the
incoherence inside regions are well suppressed, but the outliers
remains unchanged.
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(d)
Figure 2. Outliers Reduction using Bilateral Filtering. (a) Noisy image; (b)
Standard bilateral filtering; (c) lterative bilateral filtering used in [Elad
2002] 20 iterations. (d) Our new bilateral filtering operator.

Notice the outliers on the window of Figure 2(c). No matter
how many bilateral filtering iterations are applied, they never



XU, PATTANAIK: Non-iterative, Robust Monte Carlo Noise Reduction

disappear. It shows that the standard bilateral filter is not so
robust in suppressing outliers! Figure 2(d) shows the success
of our extension to bilateral filtering. Our Monte Carlo noise
reduction operator can also be used to reduce other types of
noise than Monte Carlo noise.

Numerical formulation

Equations 3 and 4 are evaluated numerically. As the weight
function is very small when farther than 3, away from the
central pixel (e @7 2@ =92 .0012), we select a
square window around the current pixel with size 65, x60, as
the neighborhood window. The discrete version of the equa-

tions in this window is shown in Equations 5 and 6.
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Our computation first finds the initial estimated value
F(i, j) for each pixel. Then, a bilateral filtering step is executed
using f(i, j)- It is a non-iterative process, and the computa-
tion is fast. The denoising effects are greatly enhanced by a
single additional initial estimate step, as shown Figure 2(d).
The pseudocode can be briefly described in Figure 3. The whole
process is a loop over each pixel, where the range filter is first
contructed using parameter ¢ and initial estimator f , and then
is convolved with original image |(p) and domain fitler to ob-
tain the bilateral filter estimator f .

3 DENOISING FRAMEWORK

As described by Jensen [Jensen 1995], most of the noise arises
from computing diffuse inter-reflection (indirect component) using
Monte Carlo methods. The contribution from direct illumination
and specular inter-reflection (direct component) carries little noise.
We follow this observation, and denoise only the indirect compo-
nent. The denoised indirect component is then added to the direct
component for the final denoising result. The direct and indirect
components are easily separated, by adding only a few lines into
the Monte Carlo renderer. The whole denoising process is briefly
shown in Figure 4.

Our denoising framework can be easily integrated to the render-
ing pipeline as a post-processing stage. The indirect and direct
components are outputs of rendering processes. After denoising
(see Figure 3 for an overview of the denoising algorithn), it is sent
to other stages for further processing, like tone mapping, storage,
or displaying. With our denoising technique, the Monte Carlo
renderer can use low sampling rates for fast quality image.

De-noising| De-noised indirect
component

Rendering. Indirect
component

Orther
processing

__Rendering 4 Direct component

Figure 2: Our denoising Framework

Algorithm MC-denoising
Construct domain filtering kernel ¢ with 04
f =1 *c /*convolution for initial estimator*/
For each pixel p

Construct range filtering kernel s with
o, f;

K=C*§

/*combine domain and range filters*/

K= K/‘K-‘ /*normalization®*/

f=1(p)*x; .

Set pixel p with estimator f;
Figure 3: Pseudocode of our algorithm.

4 EXPERIMENTAL RESULTS

We have implemented our denoising algorithm in C. The di-
rect and indirect components are obtained by adding several
lines of code to “rpict” in Radiance (see http://radsite.lbl.gov/)
to save the direct and indirect components separately.

Monte Carlo noise has several ways to contaminate the
pixel color, e.g., hue and luminance. We take the approach
followed by [Rushmeier 1994] and [McCool 1999], i.e., lumi-
nance is most likely contaminated. We use the luminance
computation formula in Radiance [Ward 1996], as shown in

Equation 7.
I (R G, B) = 0.265* R+0.670* G +0.065* B @)

Our denoising results also show that luminance carries
most Monte Carlo noise. It is worth mentioning that we carry
out Monte Carlo noise reduction in the logarithm domain of
the luminance channel. This is because the human eye has a
linear response to the logarithm of pixel luminance value.

Figures 5 and 6 show two denoising examples using our
Monte Carlo noise reduction operator. More explaination can
be found in the title of Figure 6.

Figure 7 lists time to generate the images in Figures 2,5 and
6. Our experimental platform is a Celeron 2.0GHz (392M
memory, Windows2000). The numbers in parentheses are
sampling rate. In each cell of column 2 and 3, the numbers on
the second line are the MSE. The denoising time is only a
small fraction of the noisy image rendering time, and the time
complexity of our denoising algorithm is O(n) in most cases,
where n is pixel number of the noisy image. We can see much
time is saved for quality rendered images using our Monte
Carlo noise reduction method, compared to merely improving
sampling rate. The C source code and executable are available
at  http://www.cs.ucf.edu/~rxu/mcnr/mcnrBiFiter.c  and
http://www.cs.ucf.edu/~rxu/mcnr/mcnrBiFilter.exe.
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(b) indirect component

(b)
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Figure 5: Denoising of “conference room” image. (b) is the denoised
result of (a) (5 samples), which is very similar to the accurate result
(c)(400 samples).

Figure 6: Some results of our Monte Carlo noise reduction operator
on “cabin”. (a)-(i) shows the whole denoising process for “cabin” im-
age. (a) and (b) are the direct and indirect components of (c). (b) is
denoised using our method to obtain (d). And (e) is the denoising
result by adding up (a) and (d). For comparison, we also show the
denoising result (f) using standard bilateral filtering, (g) using Wiener
filtering, and the accurate image using 300 samples (setting ad=300
in “rpict”). (i) shows clips of the right window on image (e),(f),(g), from
top to bottom. It is apparent that the outliers are removed in (e), but
remains in (f), (g). The models of the scene used to generate the

images are courtesy of Ward (see http://radsite.lbl.gov/) L3
(i) clipsfrom (e), (f) and (g)
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noisy |denoised| accurate | r's

Living room| 50s(2) 5.0s 2100s 2,04
400x300 0.152 0.089 (500)

Cabin 2865s(20) 9.8s 3602s 2,04
512x512 .3630 .2202 (300)

Conf. room| 183s(5) 6.5s 1802s 2,04
512x347 .0312 .0275 (400)

Figure 7: Statistics data. (Note: numbers in parentheses denote the
sampling rate.)

We use mean least square (MSE) as a simple fidelity
metric to confirm the relative image quality between
coarsely rendered image and denoised image. The com-
parision basis is the same image rendered at very high
quality. The MSE measurement is performed using the
logarithm of the luminance value, as shown in Equation 7.
The larger the MSE, the noisier the image. For the “confer-
ence room” in Figure 5, MSE of (a) and (b) with respect to
(c) is 0.0312 and 0.0275, respectively. And in Figure 6, MSE
of (c) and (e) with respect to (h) is 0.3630 and 0.2202, re-
spectively. Our denoising algorithm does improve the im-
age quality by reducing the MSE.

Parameters Setting

There are two parameters involved in our algorithm:¢ o,
for domain and range filters. Automatic estimation of
these bilateral filtering parameters remains a problem,
although there are some related efforts toward this prob-
lem [Jones 2003]. Fortunately, we find 0, =2,0,=04 are
appropriate for most cases of Monte Carlo noise reduction,
and we used ¢, =2,0,=0.4 in all of our experiments in
this paper.

Although these parameters are only testified through
experiments, we believe they are closely related to some
aspects of human perception including spatial vision and
color discrimination. A theoretical derivation is possible
and we leave it for further study:.

5 CoNCLUSIONS AND FUTURE WORK

We propose a non-iterative local adaptive filter based on
bilateral filtering for Monte Carlo noise reduction. Unlike
other Monte Carlo reduction methods, our approach is
able to suppress outliers and inter-pixel incoherence in a
unified framework. It can also be used in other denoising
tasks, like mesh denoising, where outliers and inside-
region incoherence coexist. A standard bilateral filtering is
enough in cases where only inside-region incoherence
needs to be reduced.

The strengths of our method lie in its simplicity, robust-
ness and efficiency. It reduces both types of noise in only
two passes. The method can be easily adapted to parallel
implementation, as well as stream processor implementa-
tion. We implemented the latter on an ATI RADEON 9700
graphics card, which can execute the denoising in real-
time. For the “cabin” image in Figure 5, our GPU imple-
mentation runs at no less than 2 fps.

This method requires only two parameters, and

0, =2,0,=04 can be used in most cases of Monte Carlo
noise reduction, although further tuning is possible. Theo-
retical derivation of these parameters is one future re-
search topic.
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