The Future of Mixed Reality:
Issues in lHlumination and Shadows

Jaakko Konttinen

School of Computer Science
University of Central Florida
Orlando, Florida
jaakko@cs.ucf.edu

Charles E. Hughes

School of Computer Science
University of Central Florida
Orlando, Florida
ceh@cs.ucf.edu

Sumanta N. Pattanaik
School of Computer Science
University of Central Florida
Orlando, Florida
sumant@cs.ucf.edu

Military training, concept design and pre-acquisition studies are often carried out in virtual
settings in which one can experience that which is, in the real world, too dangerous, too costly or
even beyond current technology. Purely virtual environments, however, have limitations in that
they remove the participant from the physical world with its visual, auditory and tactile
complexities. In contrast, Mixed Reality (MR) seeks to blend the real and synthetic. How well
that blending works is critical to the effectiveness of a user’s experience within an MR scenario.
The focus of this paper is on the visual aspects of this blending or, more specifically, on the
interactions between the real and virtual in the contexts of proper inter-occlusion, illumination,
and inter-shadowing. This means that the virtual objects must react properly to changes in real
lighting and that the real must react properly to the insertion of virtual lights (e.g., a virtual
flashlight or a simulated change in the time of day). Even more challenging, virtual objects must
cast shadows on real objects and vice versa. The proper casting of shadows is critical to military
training, in that shadows often provide clues of others’ movements, and of our own to others,
long before visual contact is made. Realistic shadows can improve training greatly; their omission
or the insertion of physically incorrect shadowing can lead to negative training. To be effective,
visual realism requires that all such interactions occur at interactive rates (30+ frames per
second). Our research focuses on algorithmic development and implementation of these
procedures on programmable graphics units (GPUs) found commonly on today’s commodity
graphics cards; the algorithms we develop are tailored to take advantage of the parallel pipeline
architecture of GPUs. Our primary application is training of dismounted infantry for the
complexities of military operations in urban terrain (MOUT).

Keywords: mixed reality, virtual reality, real-time rendering, illumination, graphics processing
unit (GPU)

Konttinen, Hughes and Pattanaik

1. Introduction

Mixed Reality (MR) covers the broad spectrum of
mixing the real and virtual that runs from
Augmented Reality (AR), where the virtual
augments the real (e.g., where people and objects
in the room may be a mixture of real and virtual),
to Augmented Virtuality, where the real world
augments the virtual (e.g., when real people
appear to be situated in a virtual setting such as in
a model of an urban environment).

The blending of the visual aspects of the real
world and virtual components is achieved in
current MR systems by using one of two visual
capture/display techniques. The first approach is
to employ an optical see-through Head Mounted
Display (HMD) with virtual objects inserted into
the user’s visual field [8]; the second is to employ
a video see-through HMD in which the real world,
as captured through cameras on the HMD, is
processed, changed and augmented with virtual
objects, and then transmitted to displays in the
user’s direct line-of-sight [10]. Our work assumes
the latter.

Employing Mixed Reality as the basis for
commercial and educational products requires that
complex virtual content be seamlessly merged
with the real [9]. This blending requires an
analysis and understanding of the real objects so
that proper inter-occlusion, illumination, and
inter-shadowing can occur. The issues addressed
in this paper are: (a) Lighting of real by virtual
and vice versa, and (b) Shadowing of virtual on
real and vice versa. Audio and haptics, while
equally important to the effectiveness of MR
experiences, are not addressed here.

2. MR/MOUT

Although the techniques we present here are
applicable to all MR experiences in which lighting
is important, illumination and shadows play a
particularly critical role in training for military
operations in urban terrain (MOUT). The research
reported here is being integrated into the
MR/MOUT project, a project supported by the
U.S. Army’s Science and Technology Objective
(STO) Embedded Training for Dismounted
Soldier (ETDS) at the Research, Development and

Engineering Command (RDECOM). This, in turn,
is being integrated with the Naval Research
Laboratory’s BARS System in a related project
supported by the Office of Naval Research. See
Figure 1.

(b) ugmented reality "
Figure 1. MR MOUT

The primary issue in MR/MOUT is the
recognition of potential threats by soldiers on the
ground who are carrying our high-risk operations
such as room clearing. Such threats are often
heard (footsteps) and their shadows seen, long
before direct visual contact occurs. To provide the
realism required to properly train people in these
MR environments, it is necessary that virtual
characters (friendlies, neutrals and hostiles) cast
shadows correctly in interactive time. This
requires the correct rendering of all the
combinations we have discussed, real on virtual
and virtual on real, as well as the easy cases of
real on real (nature does it) and virtual on virtual.
Additionally, casting virtual light on real objects

The Future of Mixed Reality: Issues in lllumination and Shadows

(e.g., with a virtual flashlight) and having real
light effect the appearance and visibility of virtual
objects provides the realism needed for successful
training exercises within darkened buildings and
in night settings.

3. Approaches

Accurate computation of illumination and shadow
of virtual objects in Virtual Worlds is challenging
because of issues of inter-object visibility and
complex interaction of light with objects.
However, the challenge in Mixed Reality is
substantially greater. Here, we do not have control
of all environmental conditions (e.g., lighting) and
we do not have any notion of the intent of the
mobile real objects (e.g., people). Depth from
stereo and other depth cue techniques can help
with the mutual occlusion problem, but do not
provide any help in the proper illumination of
virtual objects. Unfortunately, failing to consider
illumination is one effect that makes virtual
objects stand out from the real, appearing
obviously synthetic. Additionally, differences in
illumination (and positioning strategies) can have
negative impacts such as haloing of the synthetic
object(s).

In our research, we are developing efficient
rendering algorithms that address both the effect
of the real world on virtual objects and the effect
of virtual objects on the real world. To handle
these issues we need at the very minimum real-
time capture of the real-world illumination at
every point of the virtual object, and real-time
modeling of the real world. While we do not yet
have a full solution to this problem, we have had
substantial successes. We pre-design geometry of
the visible real objects to simulate their shadow
and inter-reflection effects on virtual objects and
vice-versa. For a static physical world that is
known in advance, this pre-designing process is
acceptable. We capture real-world illumination as
high dynamic range environment maps at a point
of the scene using a camera specifically designed
to capture the environment [6]. If we assume that
the major light source direction does not change
significantly, then this captured illumination can
be used for lighting all the virtual objects in the
environment.

4. Lighting and Shadows in MR

Our proposed method for lighting and shadow in
MR environments is based on conventional,
strictly VR lighting techniques that have been
adapted to work with real objects in a MR
environment. We require two things to be known
of the real objects at the time that lighting is
calculated: geometric information of the real
scene, and camera pose information.

4.1.Phantom Models

We pre-model and represent geometric
information of real objects in the scene by
“phantom” models, which are often used as
occlusion models. These are plain triangle meshes
that are never drawn on screen, but are used to
derive information required for the occlusion of
virtual objects by real objects, and the shading of
real objects by virtual lights.

When used as occlusion models, invisible
renderings of phantom objects visually occlude
other models that are behind them, providing a
simple way to create a multilayered scene, e.g.,
with the model of a person inside a building only
visible through portals (doorways and windows).
The renderings are invisible since the visual
image of each phantom model’s real world
counterpart is already contained in the captured
video frame. When used for lighting and shadows
on real objects, these models give us 3D
information about the real world surface at each
pixel they cover, which helps us calculate shading
changes for those pixels. Thus, using them, we
can increase or decrease the effects of lights,
whether real or virtual on each affected pixel.
Decreasing simulates shadows from interfering
objects; increasing simulates directional lighting.
Alternatively, we can decrease lighting and then
add it back in as necessary.

4.2.Camera Tracking

In addition to geometry, we need the spatial
relationship between the virtual lights, the real
objects, and the camera. This is required for most
lighting calculations and is also needed for
superimposition of phantom objects on their
corresponding real objects in the image for the
purpose of correct occlusion. For this to be

Konttinen, Hughes and Pattanaik

possible, we must be able to track the 3D position
and orientation of the camera in the coordinate
space of the phantom objects (or vice versa).

Tracking can be done by adding tracking
probes to important objects or by analyzing a
scene, usually based on shape recognition.
Tracking probes can involve magnetic, acoustical
or optical detection (active LEDs or passive
markers). Our approach is not tied to any specific
tracking technique so long as it provides the
required alignment transformation. In this paper,
we show examples that use tracking based on
shape marker detection [4] (Figure 2).

4 .3. lllumination

We perform the actual illumination by shading the
original pixel color from the image based on the
lighting calculation. Because of this, we are
restricted to illuminating only those pixels for
which we have geometric information in the form
of phantom objects transformed into image space.
The one exception to this is when we want to
change only the amount of ambient virtual light in
the scene.

Figure 2. Virtual fire illuminating a real world

As calculating lighting contributions can be
computationally intensive for complex surface
materials or lighting distributions, we do these
calculations on programmable fragment shaders
found in modern commodity graphics hardware
such as those manufactured by ATI and nVidia.
These graphics processing units (GPUSs) are, in
effect, small parallel computers, providing both
SIMD and pipeline parallelism.

Composition of contribution from the virtual
lights into the video frame is done by using alpha

blending between the lighting contribution and the
original pixel intensity. The blending parameters
depend on the effect we want to accomplish.
Suppose that vector D defines the original pixel
color with three components for the RGB
channels and one for alpha. Similarly the vector S
defines the virtual lighting contribution for that
pixel from the fragment shader. We can then
define the final color C as:

C=D+M*S

where M represents the material reflectance
properties (color, BRDF, etc.) of the surface at
that point. Since we rarely have access to
accurate material property information for real
objects in a highly dynamic scene, we can
approximate these properties by using the original
pixel color in place of M. The desired equation is
then:

C=D+D*S o)

The corresponding alpha blending parameters are
shown below in the form of an Effect file
commonly used to describe shading operations:

pass VirtualFire

{
AlphaBlendEnable = true;
SrcBlend = destcolor;
DestBlend = one;

b

If S has a range of [0, 1], then the above
equation is equivalent to scaling D by a factor
between [1, 2]. Expressing this in the form of eq.
(1) is well-suited for use with alpha blending
operations. We have found this approximation
gives adequate results for matte objects as shown
in the figures. For specular objects, some
estimation of the object’s BRDF should be
provided to maintain consistency with the real-
world highlights and highlights from virtual
lights.

To decrease an image’s brightness, we scale
each channel down by some constant factor.

! BRDF is the “Bidirectional Reflectance Distribution
Function.” It gives the reflectance of an object as a
function of illumination and viewing geometry.

The Future of Mixed Reality: Issues in lllumination and Shadows

Restoring intensity then becomes a matter of
modulating the darkened pixel color by the light
contribution from the virtual light. The alpha
blending parameters for this are the same as for
the above operation.

For better results, the Gamma correction of the
camera should first be inverted before the RGB
values of the video frame are manipulated. After
manipulation, Gamma correction should be re-
applied to prepare it for display. This assumes
that the camera follows the SRGB curve.

As an example, Figure 2 uses virtual fire to
illuminate a real environment based on the
brightening method described in the previous
paragraphs. The motivation behind this example
was to see if a highly dynamic light source such as
fire could still convincingly illuminate a real
environment.

For the lighting calculation, we chose a point
light-based approximation of the light contributed
by all particles. We sorted each particle into
separate groups based on the particle’s remaining
life, and used the average positions and intensities
in each group to calculate a point light for that
group. The total light contribution is then the sum
of the light contribution from each point light.
We brighten surrounding pixels based on these
point lights. A more physically accurate lighting
model would certainly give much better results
and could be implemented without having to
change the underlying shading framework.

4.4.INCLUDING SHADOWS

In this section we describe a method for adding
shadow to a scene lit by virtual lights. The
method for adding shadow to an Augmented
Reality scene is based on a novel method
presented in [2] and has been modified to include
light contributions from virtual lights. Haller’s
original method wuses the shadow volume
technique [1] from computer graphics adapted to
hardware-accelerated graphics in [3].

4.4.1. Shadow volumes

Given a point light source and an occluding
object, a shadow volume defines the subset of 3D
space that is in the occluder’s shadow. Any point
that lies inside this volume is not lit by the given
light source. Only information about the

boundary of the shadow volume is necessary for
our algorithm.

To construct a shadow volume for some
combination of light and occluder, we begin by
finding the silhouette set of edges for the
occluder. The silhouette edge set is the set of
those edges that would appear in the silhouette of
the occluder. One method of finding silhouette
edges for triangle meshes is to iterate through
each edge of the occluder while looking at the
facings of the two triangles shared by the edge. If
one triangle faces the light and the other faces
away from the light, then the edge is a silhouette
edge.

This silhouette edge set creates the “outline” of
the shadow volume. We now need to extrude this
shape into a three-dimensional volume. This is
performed by considering each edge and
performing the following operations. Each edge
is defined by two vertices. For each of these
vertices, we construct a vector from the light to
the vertex, and duplicate that vertex along the
vector some distance away from the light. The
distance can be arbitrarily determined, and most
implementations use the light’s maximum range
as the distance. Now we have another version of
each silhouette edge some distance away from the
light. Each pair of edges, the extruded and the
unextruded edge, forms two sides of a rectangle.
The remaining two sides are constructed by
forming two new edges from each corresponding
pair of edge vertices. If we construct such a
rectangle for each pair of edges, we have created a
solid volume.

Testing if a point lies within an arbitrary
volume can be an expensive operation. For
improved performance, we carry out this
calculation in graphics hardware.

4.4.2. Stencil shadow rendering

The stencil shadow volume rendering technique
[3] is a hardware-accelerated approach to testing
if a pixel lies inside some shadow volume or not.
It is well-supported by most video cards because
the only special feature required is stencil buffer
support. The stencil buffer is an extension of the
depth buffer and is used to stencil out certain
areas from rendering. When writing to the stencil
buffer, arithmetic operations can be performed on
the data values. The frame buffer can then be

Konttinen, Hughes and Pattanaik

initialized to only render on those parts that pass a
user-definable comparison test with the matching
stencil buffer data value. In a strictly virtual
setting, the technique consists of the following
rendering passes:

1. Render all objects with ambient
lighting only.

2. Fill the stencil buffer based on
the calculated shadow volumes.

3. Render those parts with full
lighting that are not in shadow.

Stage one lights the scene with ambient
lighting. Ambient light is represented as a
constant term and is wused as a cheap
approximation of indirect light reflecting from
other objects, and is assumed to be unoccluded.
Stages two and three are not very intuitive and
require some clarification. First note that in the
process of rendering all objects with ambient
lighting in step one, we have filled the depth
buffer with the final depth information for the
scene for the current frame. We thus disable
writing to the depth buffer for the remaining
passes, although it is crucial to the technique that
we still perform depth testing. Depth testing is a
general hidden surface removal algorithm. For
every pixel in the image, the depth buffer stores
the distance of the closest point whose projection
onto the image plane lies on that pixel. Thus
when a new point is projected, it is tested against
the current value in the depth buffer and discarded
if the current value in the buffer is lower (i.e. a
previously drawn point appears in front of the new
one along the viewing ray through that pixel).
Otherwise, the pixel is drawn on-screen and the
depth buffer value is updated.

Step two is performed by first clearing the
stencil buffer to all zeroes, then rendering each
shadow volume boundary mesh to the stencil
buffer in two parts. In the first pass, we only
render front-facing polygons, and for all visible
shadow volume pixels after depth testing we
increment the stencil value by one. In the second
pass, we render only back-facing polygons and
decrement the stencil value by one. After all
shadow volumes have been rendered, the pixel is
in shadow if the stencil value is non-zero.

This works because of the depth information
from step one. It is effectively the same as casting
rays from the eye through each pixel on the image
plane, and terminating the ray on the first shadow-
receiving object. If the pixel is in shadow, the
point of termination of the ray must lie within the
shadow volume. Another way of looking at this is
that the ray entered the shadow volume but never
exited it. So for all pixels where the shadow
volume intersects a shadow-receiving object,
front-facing triangles pass the depth test but back-
facing triangles fail it, and the addition from the
visible front faces to the stencil value is never
negated by the subtraction from the culled back
faces. The algorithm is similar to the point-in-
polygon algorithm from computational geometry,
where a point is determined to be inside a polygon
by counting the number of times a ray to the point
crosses the polygon boundary.

4.4.3. Adapted version

The standard stencil shadowing technique for
Augmented Reality [2] only deals with shadowing
in an environment where virtual lights are not
expected to interact with real objects for purposes
other than casting shadows. The effects of
including shadowing with illumination give most
appealing results when combined with the image
pre-darkening method from earlier section.
Changes required for implementing shadows in a
situation with no ambient darkening are
mentioned where necessary (such as the case of
the virtual fire example). We will adopt the
terminology from [2] for describing the algorithm.
The steps for rendering shadows with the adapted
method are as follows:

1. Render Real shadows on Real
objects.

2. Render Virtual shadows on Real
objects.

3. Render Real and Virtual shadows
on Virtual objects.

In this notation, real objects denote the
phantom objects of each tracked real object. Each
step is discussed in more detail in the following
sections. Real shadows on real objects are already
contained in the captured image, so step 1 can be

The Future of Mixed Reality: Issues in lllumination and Shadows

executed by simply drawing the captured image.
The remaining steps are discussed in the
following sections.

4.4.4. Virtual/Real shadows

The purpose of this step is to render shadows cast
from virtual objects to real objects. In the process
we will also virtually darken the image, and then
restore intensity to real objects with the virtual
light. It is basically an execution of the standard
stencil shadow volume algorithm with some
additional steps:

1. Render real object phantoms to
depth buffer.

2. Darken areas not covered by
phantoms by factor F.

3. Render shadow volumes to stencil
buffer.

4. Light areas that are not in
shadow by the virtual light
according to above sections.

5. Darken areas in shadow by factor
F.

Stage one fills the depth information for the
scene.

Stage two begins with the assumption that
everything in the scene for which we do not have
3D information is in shadow. If we are darkening
the scene, this effect is performed here for those
pixels that are not covered by phantom objects.

In stage three we determine which pixels for
which we have depth information are in shadow.
To determine the set of shadow volumes to render
in stage three depends on whether or not we want
real objects to cast new shadows on other real
objects when influenced by virtual lights. If we
do not, then the total set is only the set of virtual
shadow volumes. If we do, then we render real
shadow volumes as well.

In stage four, we use one of the blending
operations from one of the previous sections. If
we are restoring intensity, the thing to remember
is that the destination pixels for which we had
depth information are still at their original
(maximum) intensity. If we are modulating the
destination color by the incoming color (which
represents the lighting contribution), then we
should choose an ambient color that matches F,
the scaling factor from stage two. If we are

increasing intensity, then stages two and five can
be ignored.

In stage five, we perform the same operation as
in stage two for those pixels that were determined
to be in shadow by stage three.

4.4.5 Real/Virtual Shadows

The pass for rendering shadows from real and
virtual objects to virtual objects remains
unchanged. Briefly:

1. Clear the stencil buffer.

2. Render virtual objects with
ambient lighting only.

3. Render real and virtual shadow
volumes to stencil buffer.

4. Render unshadowed portions of
virtual objects with full
lighting.

Stages two and four should pick the same
scaling factor F from 4.4.4.

Figure 3 shows a demonstration of a virtual
light illuminating virtual and real objects, and
virtual objects casting shadow on virtual and real
objects. We track a special marker which

represents the location of the virtual flashlight in
the scene. The user can “shine” the flashlight at
real objects which should then be lit correctly.
The flashlight should also illuminate any virtual
objects it is shined towards.

Figure 3. Virtual flash light illuminating virtual
and real objects.

Konttinen, Hughes and Pattanaik

4.5.ENVIRONMENT LIGHTING

Unlike point light sources, illumination from a
scene is omni directional in nature and hence
rendering of virtual objects with such a light
source is not straightforward. We pre-compute
and store accurate lighting effects of spherical
harmonics basis light sources on the vertices of
the virtual objects. At the time of rendering for
MR, we approximate the captured environment
light into a linear combination of the spherical
harmonics basis. We make use of the GPU vertex
engine to compute the lighting at each vertex by
modulating the stored lighting effects
corresponding to each spherical harmonics basis
light with the corresponding approximation
coefficient and summing the modulated values.
The images in Figure 4 show a virtual object
(bunny) accurately lit using the captured light of
the scene. For shadow computation on the table,
we well-tessellate the phantom geometry attached
to the bottom of the virtual object. For each vertex
of the phantom mesh, we pre-compute the lighting
effect of the spherical harmonics basis lights with
and without the virtual object. We store the ratio
of these coefficients at the mesh vertices. During
rendering, we carry out the same computation at
the phantom mesh vertices as we do at the vertices
of the virtual object. However, the computation
result at the mesh vertices gives the attenuation
factor. We attenuate the intensity of the pixels
corresponding to the phantom by the interpolated
factor. This results in a smooth shadow

appropriate to the lighting in the scene. We
demonstrate this shadow in Figure 4, left side
image.

Figure 4. Accurately illuminated virtual bunny

Notice the realistic shadow appearance on the
table around the bunny in the left image. The
image on the right is without shadow.

4.6. SHADOW MAPPING

The advantage of the shadow volume method
from 4.4 is that it always guarantees artifact-free
shadows. Most mixed reality scenes however are
highly dynamic, which means that the shadow
volumes will most likely be recomputed every
frame for many objects. If the objects are high
polygon, this may affect performance.

An alternative shadowing method from
computer graphics is shadow mapping. In shadow
mapping, the view is rendered from the
perspective of each light to an off-screen buffer
called a shadow map and the output is distance to
light instead of color. In the end, the shadow
map’s contents represent the distance of the first
intersection point with an occluder for a particular
ray of light. When rendering the scene from the
camera’s perspective, the shadow map is bound as
a texture and for each visible point the matching
pixel to which that point projects on the shadow
map is found. If the distance sampled from the
shadow map is less than the distance to the light
of that surface point, the surface point is in
shadow. This is analogous to a depth test from
the light’s perspective.

Shadow maps are useful since they can be used
with any geometry that can be rasterized on
screen, and they do not require expensive pre-
computation on the CPU, such as shadow volume
calculation. The disadvantage is that the
resolution of the shadow map is finite and thus
blocky shadow edges will be visible when viewed
up-close.

Adaptation of the shadow mapping algorithm
to mixed reality applications is simple because we
already have geometry for real objects in the form
of the phantom meshes. In short:

1. Render real and virtual objects
to the shadow map.

2. Optionally darken all pixels
with no depth information from
phantoms by some scaling factor
F.

3. Render real object phantoms on
screen to Fill the depth buffer.
In this stage, change the pixel
color based on virtual lighting
contributions and the shadowing
term from the shadow map
algorithm.

The Future of Mixed Reality: Issues in lllumination and Shadows

4. Composite, light and shadow
virtual objects on-screen.

In stage one, the shadow map is constructed as
normally by rendering all virtual objects and all
real objects from the light’s perspective. All real
objects are then rendered on screen with full
lighting and modulated by the shadowing term
given by the shadow map algorithm in stages two
and three. All virtual objects are then composited
to the scene and lit and shadowed similarly.

5. User-assisted Phantom Generation

The main motivation for using the following
method is easy adaptability to a new testing
environment, which means that the phantom
geometry for real objects can be easily
recalculated on the testing site. For simplicity we
restrict ourselves to constructing planar surfaces
that were on the plane of the marker.

Suppose the transformation is represented as a
4x4 matrix M, then the equation for screen-space
coordinates x and y from world space coordinates
X, Y and Z where Z=0, are represented by the
following equations:

‘= M, X+M,Y +M,
M, X+M,Y+M,

3 M, X +M,Y +M,,
M X+M,Y+M,

Now, for any given x and y, we can solve for
the corresponding X and Y by solving the
following system of linear equations:

A=BX +CY
D=EX + FY
Where
A=M44X_M14 D:M44y_M24
B:M11_M41X E:le_M41y

C= M12 _M42X F= Mzz _M42y

Our software allows the user to quickly trace a
concave polygon in the image where each vertex

is defined in screen space, use the above formula
to solve for the shape of the polygon in world
space, and then convert it to a triangle mesh that
can be lit through the use of a general concave
polygon triangulation algorithm. We assume that
the vertex normals are always perpendicular to the
polygon. Because the tracing happens entirely in
screen space, it can be fully automated using some
feature tracking algorithm. Unfortunately our
method is limited to planar shapes. Calculating
the changing Z-coordinate of a non-planar shape
would require employing dense stereo data or a
computer vision-based algorithm such as structure
from motion.

6. Delivering the Training Experience

The lighting and shadowing algorithms just
described have been incorporated into a suite of
software, the MR Software Suite (MRSS), which
acts as our development and delivery system for
MR experiences [6]. It integrates a collection of
concurrent cooperating components. The central
component is the MR Story Engine, a container
for agents (actors), one for every user, virtual
object and real object that interacts with other
agents, plus additional agents that are useful for
the story line. The other three subsystems (Figure
5) are for various aspects of rendering a
multimodal simulation (Graphics, Audio and
Special Effects).

Mixep REALITY ENGINE

s .

Figure 5. Flow of major MRSS components

The Graphics Engine is the part that contains
the implementations of the lighting and
shadowing algorithms. These visual effects, along
with complex, realistic behaviors, significantly

Konttinen, Hughes and Pattanaik

enhance the effectiveness of MR-based military
training for encounters in close quarters.

The MRSS also provides a capture capability
that is essential for “after-action review,” a
process used in training to assess the performance
of users. Replaying trainees’ actions can show
them places where they missed cues (e.g., the
shadows of hostiles) or where they provided cues
that could or did place them in jeopardy.
Moreover, the ability of our replay to change a
user’s viewpoint can be used to show trainees
advantages that they may have gained if they had
taken advantage of their environments, e.g., by
standing in shadows

7. Conclusions and Future Directions

We have presented a method for including
contributions from virtual lights in a mixed reality
scene in a manner where computer graphics
lighting algorithms can easily be integrated into a
mixed reality application with few to no
modifications to the existing mixed reality
framework. We will now outline some potential
directions of research to further enhance the
effects of wvirtual lighting in the simulation
experience.

The algorithms presented here assume
information about real world surfaces in the form
of pre-computed geometry. For highly
uncontrolled scenes, such as those in which
objects frequently undergo non-rigid
transformations (e.g. bending), this information
may be inadequate. A solution presents itself in
the form of dense stereo data, which approximates
the scene as a dense cloud of 3D points. The
problem can then potentially be viewed in the
domain of point-based rendering, where real-time
rendering algorithms have recently appeared.

For real world objects with complicated
material properties, more information is needed
for believable virtual lighting to occur, such as
measured BRDF data. Equipment and algorithms
are available for extracting and compressing such
information. If some limited knowledge of the
real world lighting distribution is available, some
on-the-fly estimation of the reflective properties
of objects may also be performed with the use of
high-dynamic range cameras.

The effective integration of lighting and
shadowing is required to fully immerse a

dismounted soldier into an MR training
experience. However, this integration needs to go
beyond the visual rendering described earlier. In
particular, the behaviors of virtual objects need to
be affected by lighting, just as we hope the
behaviors of the human trainees are. That means,
for instance, that, when the graphical rendering of
a virtual entity casts a shadow, or the shadow cast
by another virtual or real entity is in its line-of-
sight, the agent associated with that entity must be
“aware” of these circumstances. How the agent
reacts is dependent on its behavior scripts. For
instance, the agent may hide from a perceived
threat, or it may ignore this state information if it
is “dumb” or if other state information takes
precedence, e.g., when it is part of an active fire
fight.

To date, we have implemented some primitive
feedback of visual rendering on agent behavior,
e.g., using ray tracing to inform agents of objects
in their line-of-sight. Creating more cognizant
agents that react appropriately to feedback
associated with lighting and shadowing is an
active area of our current research and one which
we believe will greatly increase the effectiveness
of MR training.

8. Acknowledgements

This work is partially supported by the Office of
Naval Research, ATI Research, the 1-4 Corridor
Fund and the Army’s Research, Development &
Engineering Command (RDECOM, Orlando).
Special thanks are due to the Mixed Reality
Laboratory, Canon Inc., for their generous support
and technical assistance.

9. References

[1] Crow, F. C. 1977. Shadow Algorithms for
Computer Graphics. Proceedings of SIGGRAPH
77,242-248.

[2] Haller, M., Drab, S., & Hartmann, W. 2003. A
Real-time Shadow Approach for an Augmented
Reality Application Using Shadow \olumes.
Proceedings of VRST 2003, 56-65.

[3] Heidmann, T. 1991. Real Shadows, Real Time.
Iris Universe, 18 (November), 23-31.

[4] Kato, H. et al. 2000. Virtual Object Manipulation
on a Table-top AR Environment. Proceedings of
ISAR 2000, Munich, Germany, 111-119.

[5] Milgram P. & Kishino, F. (1994). A Taxonomy of

[6]

[7]

The Future of Mixed Reality: Issues in lllumination and Shadows

Mixed Reality Visual Displays. IEICE Trans. on
Information and Systems, E77-D(12), 1321-1329.
M. O’Connor, and C. E. Hughes, “Authoring and
Delivering Mixed Reality = Experiences,”
Proceedings of 2005 International Conference on
Human-Computer Interface Advances in
Modeling and Simulation (SIMCHI’05), New
Orleans, January 23-27, 2005, pp. 33-39.
Pointgrey Research Inc. 2004. Retrieved June 20,
2004, from http://ptgrey.com/products/ladybug/.

[8]

[9]
[10]

Rolland, J.P., & Fuchs, H. 2000. Optical Versus
Video See-Through Head-Mounted Displays in
Medical Visualization. Presence: Teleoperators
and Virtual Environments 9(3), 287-309.
Stapleton, et al. 2002. Applying Mixed Reality to
Entertainment. IEEE Computer 35(12), 122-124.
Uchiyama, S. et al. 2002. MR Platform: A Basic
Body on Which Mixed Reality Applications are
Built. ISMAR 2002, Darmstadt, Germany, 246-
256.

