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Military training, concept design and pre-acquisition studies are often carried out in virtual 
settings in which one can experience that which is, in the real world, too dangerous, too costly or 
even beyond current technology.  Purely virtual environments, however, have limitations in that 
they remove the participant from the physical world with its visual, auditory and tactile 
complexities. In contrast, Mixed Reality (MR) seeks to blend the real and synthetic. How well 
that blending works is critical to the effectiveness of a user’s experience within an MR scenario. 
The focus of this paper is on the visual aspects of this blending or, more specifically, on the 
interactions between the real and virtual in the contexts of proper inter-occlusion, illumination, 
and inter-shadowing. This means that the virtual objects must react properly to changes in real 
lighting and that the real must react properly to the insertion of virtual lights (e.g., a virtual 
flashlight or a simulated change in the time of day). Even more challenging, virtual objects must 
cast shadows on real objects and vice versa. The proper casting of shadows is critical to military 
training, in that shadows often provide clues of others’ movements, and of our own to others, 
long before visual contact is made. Realistic shadows can improve training greatly; their omission 
or the insertion of physically incorrect shadowing can lead to negative training. To be effective, 
visual realism requires that all such interactions occur at interactive rates (30+ frames per 
second). Our research focuses on algorithmic development and implementation of these 
procedures on programmable graphics units (GPUs) found commonly on today’s commodity 
graphics cards; the algorithms we develop are tailored to take advantage of the parallel pipeline 
architecture of GPUs. Our primary application is training of dismounted infantry for the 
complexities of military operations in urban terrain (MOUT).   
 
Keywords: mixed reality, virtual reality, real-time rendering, illumination, graphics processing 
unit (GPU) 
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1. Introduction 

Mixed Reality (MR) covers the broad spectrum of 
mixing the real and virtual that runs from 
Augmented Reality (AR), where the virtual 
augments the real (e.g., where people and objects 
in the room may be a mixture of real and virtual), 
to Augmented Virtuality, where the real world 
augments the virtual (e.g., when real people 
appear to be situated in a virtual setting such as in 
a model of an urban environment). 

The blending of the visual aspects of the real 
world and virtual components is achieved in 
current MR systems by using one of two visual 
capture/display techniques. The first approach is 
to employ an optical see-through Head Mounted 
Display (HMD) with virtual objects inserted into 
the user’s visual field [8]; the second is to employ 
a video see-through HMD in which the real world, 
as captured through cameras on the HMD, is 
processed, changed and augmented with virtual 
objects, and then transmitted to displays in the 
user’s direct line-of-sight [10]. Our work assumes 
the latter. 

Employing Mixed Reality as the basis for 
commercial and educational products requires that 
complex virtual content be seamlessly merged 
with the real [9]. This blending requires an 
analysis and understanding of the real objects so 
that proper inter-occlusion, illumination, and 
inter-shadowing can occur. The issues addressed 
in this paper are: (a) Lighting of real by virtual 
and vice versa, and (b) Shadowing of virtual on 
real and vice versa. Audio and haptics, while 
equally important to the effectiveness of MR 
experiences, are not addressed here. 

 
2. MR/MOUT 

Although the techniques we present here are 
applicable to all MR experiences in which lighting 
is important, illumination and shadows play a 
particularly critical role in training for military 
operations in urban terrain (MOUT). The research 
reported here is being integrated into the 
MR/MOUT project, a project supported by the 
U.S. Army’s Science and Technology Objective 
(STO) Embedded Training for Dismounted 
Soldier (ETDS) at the Research, Development and 

Engineering Command (RDECOM). This, in turn, 
is being integrated with the Naval Research 
Laboratory’s BARS System in a related project 
supported by the Office of Naval Research. See 
Figure 1. 

 

 
a) Physical reality 

 

 
(b) Augmented reality 

 
Figure 1. MR MOUT 

 
The primary issue in MR/MOUT is the 

recognition of potential threats by soldiers on the 
ground who are carrying our high-risk operations 
such as room clearing. Such threats are often 
heard (footsteps) and their shadows seen, long 
before direct visual contact occurs. To provide the 
realism required to properly train people in these 
MR environments, it is necessary that virtual 
characters (friendlies, neutrals and hostiles) cast 
shadows correctly in interactive time. This 
requires the correct rendering of all the 
combinations we have discussed, real on virtual 
and virtual on real, as well as the easy cases of 
real on real (nature does it) and virtual on virtual. 
Additionally, casting virtual light on real objects 
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(e.g., with a virtual flashlight) and having real 
light effect the appearance and visibility of virtual 
objects provides the realism needed for successful 
training exercises within darkened buildings and 
in night settings. 

 
3. Approaches 

Accurate computation of illumination and shadow 
of virtual objects in Virtual Worlds is challenging 
because of issues of inter-object visibility and 
complex interaction of light with objects. 
However, the challenge in Mixed Reality is 
substantially greater. Here, we do not have control 
of all environmental conditions (e.g., lighting) and 
we do not have any notion of the intent of the 
mobile real objects (e.g., people). Depth from 
stereo and other depth cue techniques can help 
with the mutual occlusion problem, but do not 
provide any help in the proper illumination of 
virtual objects. Unfortunately, failing to consider 
illumination is one effect that makes virtual 
objects stand out from the real, appearing 
obviously synthetic.  Additionally, differences in 
illumination (and positioning strategies) can have 
negative impacts such as haloing of the synthetic 
object(s). 

In our research, we are developing efficient 
rendering algorithms that address both the effect 
of the real world on virtual objects and the effect 
of virtual objects on the real world. To handle 
these issues we need at the very minimum real-
time capture of the real-world illumination at 
every point of the virtual object, and real-time 
modeling of the real world. While we do not yet 
have a full solution to this problem, we have had 
substantial successes. We pre-design geometry of 
the visible real objects to simulate their shadow 
and inter-reflection effects on virtual objects and 
vice-versa. For a static physical world that is 
known in advance, this pre-designing process is 
acceptable. We capture real-world illumination as 
high dynamic range environment maps at a point 
of the scene using a camera specifically designed 
to capture the environment [6]. If we assume that 
the major light source direction does not change 
significantly, then this captured illumination can 
be used for lighting all the virtual objects in the 
environment. 
 

4. Lighting and Shadows in MR 

Our proposed method for lighting and shadow in 
MR environments is based on conventional, 
strictly VR lighting techniques that have been 
adapted to work with real objects in a MR 
environment.  We require two things to be known 
of the real objects at the time that lighting is 
calculated: geometric information of the real 
scene, and camera pose information. 
 

4.1. Phantom Models 

We pre-model and represent geometric 
information of real objects in the scene by 
“phantom” models, which are often used as 
occlusion models. These are plain triangle meshes 
that are never drawn on screen, but are used to 
derive information required for the occlusion of 
virtual objects by real objects, and the shading of 
real objects by virtual lights. 

When used as occlusion models, invisible 
renderings of phantom objects visually occlude 
other models that are behind them, providing a 
simple way to create a multilayered scene, e.g., 
with the model of a person inside a building only 
visible through portals (doorways and windows). 
The renderings are invisible since the visual 
image of each phantom model’s real world 
counterpart is already contained in the captured 
video frame.  When used for lighting and shadows 
on real objects, these models give us 3D 
information about the real world surface at each 
pixel they cover, which helps us calculate shading 
changes for those pixels. Thus, using them, we 
can increase or decrease the effects of lights, 
whether real or virtual on each affected pixel. 
Decreasing simulates shadows from interfering 
objects; increasing simulates directional lighting. 
Alternatively, we can decrease lighting and then 
add it back in as necessary.  
 

4.2. Camera Tracking 

In addition to geometry, we need the spatial 
relationship between the virtual lights, the real 
objects, and the camera.  This is required for most 
lighting calculations and is also needed for 
superimposition of phantom objects on their 
corresponding real objects in the image for the 
purpose of correct occlusion. For this to be 
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possible, we must be able to track the 3D position 
and orientation of the camera in the coordinate 
space of the phantom objects (or vice versa). 

Tracking can be done by adding tracking 
probes to important objects or by analyzing a 
scene, usually based on shape recognition. 
Tracking probes can involve magnetic, acoustical 
or optical detection (active LEDs or passive 
markers). Our approach is not tied to any specific 
tracking technique so long as it provides the 
required alignment transformation.  In this paper, 
we show examples that use tracking based on 
shape marker detection [4] (Figure 2). 

 
4.3. Illumination 

We perform the actual illumination by shading the 
original pixel color from the image based on the 
lighting calculation.  Because of this, we are 
restricted to illuminating only those pixels for 
which we have geometric information in the form 
of phantom objects transformed into image space. 
The one exception to this is when we want to 
change only the amount of ambient virtual light in 
the scene.  

 

 

Figure 2. Virtual fire illuminating a real world   

As calculating lighting contributions can be 
computationally intensive for complex surface 
materials or lighting distributions, we do these 
calculations on programmable fragment shaders 
found in modern commodity graphics hardware 
such as those manufactured by ATI and nVidia. 
These graphics processing units (GPUs) are, in 
effect, small parallel computers, providing both 
SIMD and pipeline parallelism.  

Composition of contribution from the virtual 
lights into the video frame is done by using alpha 

blending between the lighting contribution and the 
original pixel intensity.  The blending parameters 
depend on the effect we want to accomplish. 
Suppose that vector D defines the original pixel 
color with three components for the RGB 
channels and one for alpha.  Similarly the vector S 
defines the virtual lighting contribution for that 
pixel from the fragment shader.  We can then 
define the final color C as: 
 

SMDC *+=  
 

where M represents the material reflectance 
properties (color, BRDF1, etc.) of the surface at 
that point.  Since we rarely have access to 
accurate material property information for real 
objects in a highly dynamic scene, we can 
approximate these properties by using the original 
pixel color in place of M.  The desired equation is 
then: 
 

SDDC *+=               (1) 
 
The corresponding alpha blending parameters are 
shown below in the form of an Effect file 
commonly used to describe shading operations: 
 
 pass VirtualFire 
 { 
  AlphaBlendEnable = true; 
  SrcBlend = destcolor; 
  DestBlend = one; 
  ... 
 } 
 

If S has a range of [0, 1], then the above 
equation is equivalent to scaling D by a factor 
between [1, 2]. Expressing this in the form of eq. 
(1) is well-suited for use with alpha blending 
operations.  We have found this approximation 
gives adequate results for matte objects as shown 
in the figures.  For specular objects, some 
estimation of the object’s BRDF should be 
provided to maintain consistency with the real-
world highlights and highlights from virtual 
lights. 

To decrease an image’s brightness, we scale 
each channel down by some constant factor.  
                                                           
1 BRDF is the “Bidirectional Reflectance Distribution 
Function.” It gives the reflectance of an object as a 
function of illumination and viewing geometry. 
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Restoring intensity then becomes a matter of 
modulating the darkened pixel color by the light 
contribution from the virtual light.  The alpha 
blending parameters for this are the same as for 
the above operation. 

For better results, the Gamma correction of the 
camera should first be inverted before the RGB 
values of the video frame are manipulated.  After 
manipulation, Gamma correction should be re-
applied to prepare it for display.  This assumes 
that the camera follows the sRGB curve. 

As an example, Figure 2 uses virtual fire to 
illuminate a real environment based on the 
brightening method described in the previous 
paragraphs.  The motivation behind this example 
was to see if a highly dynamic light source such as 
fire could still convincingly illuminate a real 
environment.   

For the lighting calculation, we chose a point 
light-based approximation of the light contributed 
by all particles.  We sorted each particle into 
separate groups based on the particle’s remaining 
life, and used the average positions and intensities 
in each group to calculate a point light for that 
group.  The total light contribution is then the sum 
of the light contribution from each point light.  
We brighten surrounding pixels based on these 
point lights.  A more physically accurate lighting 
model would certainly give much better results 
and could be implemented without having to 
change the underlying shading framework. 
 

4.4. INCLUDING SHADOWS 

In this section we describe a method for adding 
shadow to a scene lit by virtual lights.  The 
method for adding shadow to an Augmented 
Reality scene is based on a novel method 
presented in [2] and has been modified to include 
light contributions from virtual lights.  Haller’s 
original method uses the shadow volume 
technique [1] from computer graphics adapted to 
hardware-accelerated graphics in [3]. 
 

4.4.1. Shadow volumes 

Given a point light source and an occluding 
object, a shadow volume defines the subset of 3D 
space that is in the occluder’s shadow.  Any point 
that lies inside this volume is not lit by the given 
light source.  Only information about the 

boundary of the shadow volume is necessary for 
our algorithm. 

To construct a shadow volume for some 
combination of light and occluder, we begin by 
finding the silhouette set of edges for the 
occluder.  The silhouette edge set is the set of 
those edges that would appear in the silhouette of 
the occluder.  One method of finding silhouette 
edges for triangle meshes is to iterate through 
each edge of the occluder while looking at the 
facings of the two triangles shared by the edge.  If 
one triangle faces the light and the other faces 
away from the light, then the edge is a silhouette 
edge. 

This silhouette edge set creates the “outline” of 
the shadow volume.  We now need to extrude this 
shape into a three-dimensional volume.  This is 
performed by considering each edge and 
performing the following operations.  Each edge 
is defined by two vertices.  For each of these 
vertices, we construct a vector from the light to 
the vertex, and duplicate that vertex along the 
vector some distance away from the light.  The 
distance can be arbitrarily determined, and most 
implementations use the light’s maximum range 
as the distance.  Now we have another version of 
each silhouette edge some distance away from the 
light.      Each pair of edges, the extruded and the 
unextruded edge, forms two sides of a rectangle.  
The remaining two sides are constructed by 
forming two new edges from each corresponding 
pair of edge vertices.  If we construct such a 
rectangle for each pair of edges, we have created a 
solid volume.  

Testing if a point lies within an arbitrary 
volume can be an expensive operation.  For 
improved performance, we carry out this 
calculation in graphics hardware. 
 

4.4.2. Stencil shadow rendering 

The stencil shadow volume rendering technique 
[3] is a hardware-accelerated approach to testing 
if a pixel lies inside some shadow volume or not.  
It is well-supported by most video cards because 
the only special feature required is stencil buffer 
support.  The stencil buffer is an extension of the 
depth buffer and is used to stencil out certain 
areas from rendering.  When writing to the stencil 
buffer, arithmetic operations can be performed on 
the data values.  The frame buffer can then be 
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initialized to only render on those parts that pass a 
user-definable comparison test with the matching 
stencil buffer data value. In a strictly virtual 
setting, the technique consists of the following 
rendering passes: 
 
1. Render all objects with ambient 

lighting only. 
 

2. Fill the stencil buffer based on 
the calculated shadow volumes. 
 

3. Render those parts with full 
lighting that are not in shadow. 

 
Stage one lights the scene with ambient 

lighting.  Ambient light is represented as a 
constant term and is used as a cheap 
approximation of indirect light reflecting from 
other objects, and is assumed to be unoccluded.  
Stages two and three are not very intuitive and 
require some clarification.  First note that in the 
process of rendering all objects with ambient 
lighting in step one, we have filled the depth 
buffer with the final depth information for the 
scene for the current frame.  We thus disable 
writing to the depth buffer for the remaining 
passes, although it is crucial to the technique that 
we still perform depth testing.  Depth testing is a 
general hidden surface removal algorithm.  For 
every pixel in the image, the depth buffer stores 
the distance of the closest point whose projection 
onto the image plane lies on that pixel.  Thus 
when a new point is projected, it is tested against 
the current value in the depth buffer and discarded 
if the current value in the buffer is lower (i.e. a 
previously drawn point appears in front of the new 
one along the viewing ray through that pixel).  
Otherwise, the pixel is drawn on-screen and the 
depth buffer value is updated. 

Step two is performed by first clearing the 
stencil buffer to all zeroes, then rendering each 
shadow volume boundary mesh to the stencil 
buffer in two parts.  In the first pass, we only 
render front-facing polygons, and for all visible 
shadow volume pixels after depth testing we 
increment the stencil value by one.  In the second 
pass, we render only back-facing polygons and 
decrement the stencil value by one.  After all 
shadow volumes have been rendered, the pixel is 
in shadow if the stencil value is non-zero. 

This works because of the depth information 
from step one.  It is effectively the same as casting 
rays from the eye through each pixel on the image 
plane, and terminating the ray on the first shadow-
receiving object.  If the pixel is in shadow, the 
point of termination of the ray must lie within the 
shadow volume.  Another way of looking at this is 
that the ray entered the shadow volume but never 
exited it.  So for all pixels where the shadow 
volume intersects a shadow-receiving object, 
front-facing triangles pass the depth test but back-
facing triangles fail it, and the addition from the 
visible front faces to the stencil value is never 
negated by the subtraction from the culled back 
faces.  The algorithm is similar to the point-in-
polygon algorithm from computational geometry, 
where a point is determined to be inside a polygon 
by counting the number of times a ray to the point 
crosses the polygon boundary. 
 

4.4.3. Adapted version 

The standard stencil shadowing technique for 
Augmented Reality [2] only deals with shadowing 
in an environment where virtual lights are not 
expected to interact with real objects for purposes 
other than casting shadows.  The effects of 
including shadowing with illumination give most 
appealing results when combined with the image 
pre-darkening method from earlier section.  
Changes required for implementing shadows in a 
situation with no ambient darkening are 
mentioned where necessary (such as the case of 
the virtual fire example).  We will adopt the 
terminology from [2] for describing the algorithm.  
The steps for rendering shadows with the adapted 
method are as follows: 
 
1. Render Real shadows on Real 

objects. 
 

2. Render Virtual shadows on Real 
objects. 
 

3. Render Real and Virtual shadows 
on Virtual objects. 

 

In this notation, real objects denote the 
phantom objects of each tracked real object.  Each 
step is discussed in more detail in the following 
sections.  Real shadows on real objects are already 
contained in the captured image, so step 1 can be 
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executed by simply drawing the captured image.  
The remaining steps are discussed in the 
following sections. 
 

4.4.4. Virtual/Real shadows 

The purpose of this step is to render shadows cast 
from virtual objects to real objects.  In the process 
we will also virtually darken the image, and then 
restore intensity to real objects with the virtual 
light.  It is basically an execution of the standard 
stencil shadow volume algorithm with some 
additional steps: 
 
1. Render real object phantoms to 

depth buffer. 
2. Darken areas not covered by 

phantoms by factor F. 
3. Render shadow volumes to stencil 

buffer. 
4. Light areas that are not in 

shadow by the virtual light 
according to above sections. 

5. Darken areas in shadow by factor 
F. 

 
Stage one fills the depth information for the 

scene. 
Stage two begins with the assumption that 

everything in the scene for which we do not have 
3D information is in shadow.  If we are darkening 
the scene, this effect is performed here for those 
pixels that are not covered by phantom objects. 

In stage three we determine which pixels for 
which we have depth information are in shadow.  
To determine the set of shadow volumes to render 
in stage three depends on whether or not we want 
real objects to cast new shadows on other real 
objects when influenced by virtual lights.  If we 
do not, then the total set is only the set of virtual 
shadow volumes.  If we do, then we render real 
shadow volumes as well. 

In stage four, we use one of the blending 
operations from one of the previous sections.  If 
we are restoring intensity, the thing to remember 
is that the destination pixels for which we had 
depth information are still at their original 
(maximum) intensity.  If we are modulating the 
destination color by the incoming color (which 
represents the lighting contribution), then we 
should choose an ambient color that matches F, 
the scaling factor from stage two.  If we are 

increasing intensity, then stages two and five can 
be ignored.  

In stage five, we perform the same operation as 
in stage two for those pixels that were determined 
to be in shadow by stage three. 

 
4.4.5 Real/Virtual Shadows 

 
The pass for rendering shadows from real and 
virtual objects to virtual objects remains 
unchanged.  Briefly: 

 
1. Clear the stencil buffer. 
2. Render virtual objects with 

ambient lighting only. 
3. Render real and virtual shadow 

volumes to stencil buffer. 
4. Render unshadowed portions of 

virtual objects with full 
lighting. 
 

Stages two and four should pick the same 
scaling factor F from 4.4.4. 

Figure 3 shows a demonstration of a virtual 
light illuminating virtual and real objects, and 
virtual objects casting shadow on virtual and real 
objects. We track a special marker which 
represents the location of the virtual flashlight in 
the scene.  The user can “shine” the flashlight at 
real objects which should then be lit correctly.  
The flashlight should also illuminate any virtual 
objects it is shined towards. 

 

 
 
Figure 3. Virtual flash light illuminating virtual 
and real objects. 
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4.5. ENVIRONMENT LIGHTING 

Unlike point light sources, illumination from a 
scene is omni directional in nature and hence 
rendering of virtual objects with such a light 
source is not straightforward. We pre-compute 
and store accurate lighting effects of spherical 
harmonics basis light sources on the vertices of 
the virtual objects.  At the time of rendering for 
MR, we approximate the captured environment 
light into a linear combination of the spherical 
harmonics basis. We make use of the GPU vertex 
engine to compute the lighting at each vertex by 
modulating the stored lighting effects 
corresponding to each spherical harmonics basis 
light with the corresponding approximation 
coefficient and summing the modulated values.  

The images in Figure 4 show a virtual object 
(bunny) accurately lit using the captured light of 
the scene. For shadow computation on the table, 
we well-tessellate the phantom geometry attached 
to the bottom of the virtual object. For each vertex 
of the phantom mesh, we pre-compute the lighting 
effect of the spherical harmonics basis lights with 
and without the virtual object. We store the ratio 
of these coefficients at the mesh vertices. During 
rendering, we carry out the same computation at 
the phantom mesh vertices as we do at the vertices 
of the virtual object. However, the computation 
result at the mesh vertices gives the attenuation 
factor. We attenuate the intensity of the pixels 
corresponding to the phantom by the interpolated 
factor. This results in a smooth shadow 
appropriate to the lighting in the scene. We 
demonstrate this shadow in Figure 4, left side 
image.  

 

 
 
Figure 4. Accurately illuminated virtual bunny 
 

Notice the realistic shadow appearance on the 
table around the bunny in the left image. The 
image on the right is without shadow. 
 

4.6. SHADOW MAPPING 
 

The advantage of the shadow volume method 
from 4.4 is that it always guarantees artifact-free 
shadows.  Most mixed reality scenes however are 
highly dynamic, which means that the shadow 
volumes will most likely be recomputed every 
frame for many objects.  If the objects are high 
polygon, this may affect performance. 

An alternative shadowing method from 
computer graphics is shadow mapping.  In shadow 
mapping, the view is rendered from the 
perspective of each light to an off-screen buffer 
called a shadow map and the output is distance to 
light instead of color.  In the end, the shadow 
map’s contents represent the distance of the first 
intersection point with an occluder for a particular 
ray of light.  When rendering the scene from the 
camera’s perspective, the shadow map is bound as 
a texture and for each visible point the matching 
pixel to which that point projects on the shadow 
map is found.  If the distance sampled from the 
shadow map is less than the distance to the light 
of that surface point, the surface point is in 
shadow.  This is analogous to a depth test from 
the light’s perspective. 

Shadow maps are useful since they can be used 
with any geometry that can be rasterized on 
screen, and they do not require expensive pre-
computation on the CPU, such as shadow volume 
calculation.  The disadvantage is that the 
resolution of the shadow map is finite and thus 
blocky shadow edges will be visible when viewed 
up-close. 

Adaptation of the shadow mapping algorithm 
to mixed reality applications is simple because we 
already have geometry for real objects in the form 
of the phantom meshes.  In short: 

 
1. Render real and virtual objects 

to the shadow map. 
2. Optionally darken all pixels 

with no depth information from 
phantoms by some scaling factor 
F. 

3. Render real object phantoms on 
screen to fill the depth buffer.  
In this stage, change the pixel 
color based on virtual lighting 
contributions and the shadowing 
term from the shadow map 
algorithm. 
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4. Composite, light and shadow 
virtual objects on-screen. 

 
In stage one, the shadow map is constructed as 

normally by rendering all virtual objects and all 
real objects from the light’s perspective.  All real 
objects are then rendered on screen with full 
lighting and modulated by the shadowing term 
given by the shadow map algorithm in stages two 
and three.  All virtual objects are then composited 
to the scene and lit and shadowed similarly. 

 
5. User-assisted Phantom Generation 

The main motivation for using the following 
method is easy adaptability to a new testing 
environment, which means that the phantom 
geometry for real objects can be easily 
recalculated on the testing site. For simplicity we 
restrict ourselves to constructing planar surfaces 
that were on the plane of the marker. 

Suppose the transformation is represented as a 
4x4 matrix M, then the equation for screen-space 
coordinates x and y from world space coordinates 
X, Y and Z where Z=0, are represented by the 
following equations: 

 

444241

141211

MYMXM
MYMXMx

++
++

=  

 

444241

242221

MYMXM
MYMXMy

++
++

=  

 
Now, for any given x and y, we can solve for 

the corresponding X and Y by solving the 
following system of linear equations: 
 

FYEXD
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+=

 

 
Where 
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Our software allows the user to quickly trace a 

concave polygon in the image where each vertex 

is defined in screen space, use the above formula 
to solve for the shape of the polygon in world 
space, and then convert it to a triangle mesh that 
can be lit through the use of a general concave 
polygon triangulation algorithm.  We assume that 
the vertex normals are always perpendicular to the 
polygon.  Because the tracing happens entirely in 
screen space, it can be fully automated using some 
feature tracking algorithm.  Unfortunately our 
method is limited to planar shapes.  Calculating 
the changing Z-coordinate of a non-planar shape 
would require employing dense stereo data or a 
computer vision-based algorithm such as structure 
from motion.  
 
6. Delivering the Training Experience 

The lighting and shadowing algorithms just 
described have been incorporated into a suite of 
software, the MR Software Suite (MRSS), which 
acts as our development and delivery system for 
MR experiences [6]. It integrates a collection of 
concurrent cooperating components. The central 
component is the MR Story Engine, a container 
for agents (actors), one for every user, virtual 
object and real object that interacts with other 
agents, plus additional agents that are useful for 
the story line. The other three subsystems (Figure 
5) are for various aspects of rendering a 
multimodal simulation (Graphics, Audio and 
Special Effects).   
 

 
 

Figure 5. Flow of major MRSS components 
 
The Graphics Engine is the part that contains 

the implementations of the lighting and 
shadowing algorithms. These visual effects, along 
with complex, realistic behaviors, significantly 
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enhance the effectiveness of MR-based military 
training for encounters in close quarters. 

The MRSS also provides a capture capability 
that is essential for “after-action review,” a 
process used in training to assess the performance 
of users. Replaying trainees’ actions can show 
them places where they missed cues (e.g., the 
shadows of hostiles) or where they provided cues 
that could or did place them in jeopardy. 
Moreover, the ability of our replay to change a 
user’s viewpoint can be used to show trainees 
advantages that they may have gained if they had 
taken advantage of their environments, e.g., by 
standing in shadows 
 
7. Conclusions and Future Directions 

We have presented a method for including 
contributions from virtual lights in a mixed reality 
scene in a manner where computer graphics 
lighting algorithms can easily be integrated into a 
mixed reality application with few to no 
modifications to the existing mixed reality 
framework.  We will now outline some potential 
directions of research to further enhance the 
effects of virtual lighting in the simulation 
experience. 

The algorithms presented here assume 
information about real world surfaces in the form 
of pre-computed geometry.  For highly 
uncontrolled scenes, such as those in which 
objects frequently undergo non-rigid 
transformations (e.g. bending), this information 
may be inadequate.  A solution presents itself in 
the form of dense stereo data, which approximates 
the scene as a dense cloud of 3D points.  The 
problem can then potentially be viewed in the 
domain of point-based rendering, where real-time 
rendering algorithms have recently appeared.  

For real world objects with complicated 
material properties, more information is needed 
for believable virtual lighting to occur, such as 
measured BRDF data.  Equipment and algorithms 
are available for extracting and compressing such 
information.  If some limited knowledge of the 
real world lighting distribution is available, some 
on-the-fly estimation of the reflective properties 
of objects may also be performed with the use of 
high-dynamic range cameras. 

The effective integration of lighting and 
shadowing is required to fully immerse a 

dismounted soldier into an MR training 
experience. However, this integration needs to go 
beyond the visual rendering described earlier. In 
particular, the behaviors of virtual objects need to 
be affected by lighting, just as we hope the 
behaviors of the human trainees are. That means, 
for instance, that, when the graphical rendering of 
a virtual entity casts a shadow, or the shadow cast 
by another virtual or real entity is in its line-of-
sight, the agent associated with that entity must be 
“aware” of these circumstances. How the agent 
reacts is dependent on its behavior scripts. For 
instance, the agent may hide from a perceived 
threat, or it may ignore this state information if it 
is “dumb” or if other state information takes 
precedence, e.g., when it is part of an active fire 
fight. 

To date, we have implemented some primitive 
feedback of visual rendering on agent behavior, 
e.g., using ray tracing to inform agents of objects 
in their line-of-sight. Creating more cognizant 
agents that react appropriately to feedback 
associated with lighting and shadowing is an 
active area of our current research and one which 
we believe will greatly increase the effectiveness 
of MR training. 
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