CAP5415-Computer Vision
Lecture 3-Edge Maps and Histograms

Ulas Bagci

bagci@ucf.edu
Outline

• Continue edge detection and filtering methods,
• Histogram-based analysis

• Read Szeliski, Chapter 3.
• Read Shah, Chapter 2.
• Read/Program CV with Python, Chapters 1 and 2.
Revisiting Edge Detection

- **Goal:** Identify sudden changes (discontinuities) in an image
 - Most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels
 - Marks the border of an object
Origins of Edges

- Edges are caused by a variety of factors:
 - Surface normal discontinuity
 - Depth discontinuity
 - Surface color discontinuity
 - Illumination discontinuity
Close-up Edges
Close-up Edges
Characterizing Edges

- An edge is a place of rapid change in the image intensity function.
Intensity Profile
Effects of Noise

Increasing noise

Zero mean additive Gaussian noise
Effects of Noise

Where is the edge?

Credit to Seitz.
Solution: Smoothing

- Smoothing removes noise, but **blurs** edge.
Revisiting Median Filtering

[8 8 8 8 8 8 8 8 8 255]

median

Neighborhood
impulse noise
Revisiting Median Filtering

- Original image “Eight.tif” with added ‘salt-and-pepper’ noise then filtered with a (3-by-3) averaging filter and a (3-by-3) median filter.

Observation:
The median filter does a better job of removing ‘salt-and-pepper’ noise, with less blurring of edges.
Revisit: Image Gradient

- The gradient of an image:
 \[\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right] \]

- The gradient points in the direction of most rapid increase in intensity.
- The gradient direction is given by
 \[\theta = \tan^{-1}\left(\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}}\right) \]

 - how does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude

\[||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \]

Source: Steve Seitz
Design Criteria for Edge Detection Problems

- **Good Detection**: minimize prob. of FP (detecting spurious edges) and FN (missing real edges)
- **Good Localization**: must be as close as possible to the true edges
- **Single Response**: must return one point only for each true edge point

True edge

Poor robustness to noise

Poor localization

Too many responses
Evaluate Edge Detection

\[
\text{precision} = \frac{\text{GT} \cap \text{RM}}{\text{RM}} = \frac{\text{TP}}{\text{RM}}
\]

\[
\text{recall} = \frac{\text{GT} \cap \text{RM}}{\text{GT}} = \frac{\text{TP}}{\text{GT}}
\]

\[
F_1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}
\]

Ground Truth (GT)

Results of Method (RM)

True Positives (TP)

True Negatives (TN)

False Negatives (FN)

False Positives (FP)
Basic Comparisons of Edge Operators

Gradient:
\[\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix} \]

Roberts (2 x 2):
\[
\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
\end{array}
\quad \begin{array}{cc}
1 & 0 \\
0 & -1 \\
\end{array}
\]

Sobel (3 x 3):
\[
\begin{array}{ccc}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1 \\
\end{array}
\quad \begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & -1 & 1 \\
\end{array}
\]

Sobel (5 x 5):
\[
\begin{array}{ccccc}
-1 & -2 & 0 & 2 & 1 \\
-2 & -3 & 0 & 3 & 2 \\
-3 & -5 & 0 & 5 & 3 \\
-2 & -3 & 0 & 3 & 2 \\
-1 & -2 & 0 & 2 & 1 \\
\end{array}
\quad \begin{array}{ccccc}
1 & 2 & 3 & 2 & 1 \\
2 & 3 & 5 & 3 & 2 \\
0 & 0 & 0 & 0 & 0 \\
-2 & -3 & -5 & -3 & -2 \\
-1 & -2 & -3 & -2 & -1 \\
\end{array}
\]

Good Localization
Noise Sensitive
Poor Detection

Poor Localization
Less Noise Sensitive
Good Detection
Example: Laplacian of Gaussian (LoG) and Canny Edge Detector

Marr and Hildreth Filtering, 1980.
- Smooth Image with Gaussian Filter
- Applying the Laplacian for a Gaussian-filtered image can be done in one step of convolution.
- Find zero-crossings
- Find slope of zero-crossings
- Apply threshold to slope and mark edges

J. Canny. 1986
- Smooth Image with Gaussian filter
- Compute Derivative of filtered image
- Find Magnitude and Orientation of gradient
- Apply Non-max suppression
- Apply Thresholding (Hysteresis)
Example: Canny
Example: Canny-Gradients

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude
Example: Gradient Orientation

\[
\theta = \text{atan2}(g_y, g_x)
\]
Example: Non-maximum suppression

\[M(x, y) = \begin{cases}
|\nabla S(x, y)| \quad & \text{if } |\nabla S(x, y)| > |\Delta S(x', y')| \\
& \quad & \text{and } |\Delta S(x, y)| > |\Delta S(x'', y'')| \\
0 \quad & \text{otherwise}
\end{cases} \]

\(x' \) and \(x'' \) are the neighbors of \(x \) along normal direction to an edge.
Example: Non-maximum suppression

Before Non-Max Suppression

After Non-Max Suppression
Example: Hysteresis Thresholding \([L, H]\)

- If the gradient at a pixel is
 - above "High", declare it as an ‘edge pixel’
 - below "Low", declare it as a “non-edge-pixel”
 - between “low” and “high”

 - Consider its neighbors iteratively then declare it an “edge pixel” if it is connected to an ‘edge pixel’ directly or via pixels between “low” and “high”.

Gradient magnitude

High

low
Example: Hysteresis Thresholding \([L, H]\)

1. Threshold at low/high levels to get weak/strong edge pixels
2. Do connected components, starting from strong edge pixels
Example: Final Canny Edges
Effect of Gaussian Kernel (smoothing)

The choice of \(\sigma \) depends on desired behavior

- large \(\sigma \) detects large scale edges
- small \(\sigma \) detects fine features
Image Histogram

• A **histogram** represents tabulated frequencies, typically by using bars in a graphical diagram.

• It provides a natural bridge between Images and a probabilistic description.

Ex: What is the probability of pixel \(p \) at location \((x,y) \) has brightness \(z \)?

• Histogram of a digital image typically has many local minima and maxima, which may complicate its further Processing.

• This problem can be solved by local smoothing of the histogram.
Histogram

image

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

histogram
Histogram and PDF

• Assume a scalar image, A, and its histogram H.

\[h(u) = \frac{H(u)}{\mid \Omega \mid} \]

• Denominator is the size of histogram (num. of pixels)

• h -> PDF, relative frequencies are set between 0 and 1.
Entropy / Histogram

• If a probability density h is known, then image information content can be estimated regardless of its interpretation using entropy E.

$$E(X) = - \sum_{k=1}^{n} h(x_k) \log h(x_k)$$

• Shannon, 1948 [Information entropy].

• Amount of uncertainty about an event associated with a given PDF
Gradation Functions

• When recording image data, there are often particular problems: lighting, motion blur, noise,...
 – Uniform illumination is desired
 – Smoothing (denoising)
 – Sharpening
Gradation Functions

• When recording image data, there are often particular problems: *lighting, motion blur, noise,...*
 – Uniform illumination is desired
 – Smoothing (denoising)
 – Sharpening
Gradation Functions

- We transform an image A into a new image A_{new} of the same size, by mapping a grey level u at pixel location p in A by a gradation function g onto a grey level $v=g(u)$.
Gradation Functions

- We transform an image A into a new image A_{new} of the same size, by mapping a grey level u at pixel location p in A by a gradation function g onto a grey level $v=g(u)$.

\[y = x \]

No influence on visual quality at all.
Gradation Functions

• We transform an image A into a new image A_{new} of the same size, by mapping a grey level u at pixel location p in A by a gradation function g onto a grey level $v=g(u)$.

- Digital negative

\[y = L - x \]
Gradation Functions - Contrast Stretching

\[y = \begin{cases}
\alpha x & 0 \leq x < a \\
\beta (x - a) + y_a & a \leq x < b \\
\gamma (x - b) + y_b & b \leq x < L
\end{cases} \]

\[a = 50, \ b = 150, \ \alpha = 0.2, \ \beta = 2, \ \gamma = 1, \ y_a = 30, \ y_b = 200 \]
Gradation Functions - Clipping

\[y = \begin{cases}
0 & 0 \leq x < a \\
\beta(x - a) & a \leq x < b \\
\beta(b - a) & b \leq x < L
\end{cases} \]

\[a = 50, b = 150, \beta = 2 \]
Gradation Functions - Range Compression

\[y = c \log_{10}(1 + x) \]

\[c=100 \]
Gradation Functions - Range Compression

\[y = c \log_{10}(1 + x) \]

c = 100

\[y = 10 \log_{10}(1 + x) \]
Gradation Functions

• We transform an image A into a new image A_{new} of the same size, by mapping a grey level u at pixel location p in A by a gradation function g onto a grey level $v=g(u)$.

• Histogram Equalization:
 – The aim is to create an image with equally distributed brightness (intensity) levels over the whole brightness (intensity) scale.
 – Enhances contrast for intensity values close to histogram maxima and decreases contrast near minima
Histogram Equalization

Over-exposed image
Histogram Equalization

![Diagram of histogram equalization with examples of dark, gray, and bright regions.](attachment:histogram_equalization_diagram.png)
Histogram Equalization
Algorithm for Histogram Equalization

Normalized histogram p (PDF) of an image f, whose intensity values span from 0 to $L-1$

$$p_n = \frac{\text{number of pixels with intensity } n}{\text{total number of pixels}}$$

$n = 0, 1, \ldots, L - 1.$

The histogram equalized image g will be defined by

$$g_{i,j} = \text{floor}((L - 1) \sum_{n=0}^{f_{i,j}} p_n),$$
Histogram Transform
Histogram Equalization – Discrete Case

- for discrete case we have:

\[s_k = T(r_k) = (L - 1) \sum_{j=0}^{k} p_r(r_j) \]

\[= \frac{(L - 1)}{M \cdot N} \sum_{j=0}^{k} n_j \quad 0 \leq k \leq L - 1 \]

- assume \(L = 8, M = N = 64, M \cdot N = 4096 \)

- \(s_0 = T(r_0) = 7 \cdot \sum_{j=0}^{0} p_r(r_j) = 7 \cdot p_r(0) = 1.33 \rightarrow 1 \)

- \(s_1 = T(r_1) = 7 \cdot \sum_{j=0}^{1} p_r(r_j) = 7 \cdot (p_r(0) + p_r(1)) = 3.08 \rightarrow 3 \)

- \(s_2 = T(r_2) = 7 \cdot \sum_{j=0}^{2} p_r(r_j) = 7 \cdot (p_r(0) + p_r(1) + p_r(2)) = 4.55 \rightarrow 5 \)

\[s_3 = 5.67 \rightarrow 6, s_4 = 6.23 \rightarrow 6, s_5 = 6.65 \rightarrow 7, s_6 = 6.86 \rightarrow 7, s_7 = 7.00 \rightarrow 7 \]
Histogram Equalization - Discrete

- final transform:

\[r_0 \rightarrow s_0 = 1 \Rightarrow 790 \text{ pixels map to 1} \]
\[r_1 \rightarrow s_1 = 3 \Rightarrow 1023 \text{ pixels map to 3} \]
\[r_2 \rightarrow s_2 = 5 \Rightarrow 850 \text{ pixels map to 5} \]
\[r_3 \rightarrow s_3 = 6 \Rightarrow 656 + 329 = 985 \text{ pixels map to 6} \]
\[r_4 \rightarrow s_4 = 6 \Rightarrow 656 + 329 = 985 \text{ pixels map to 6} \]
\[r_5 \rightarrow s_5 = 7 \Rightarrow 245 + 122 + 81 = 458 \text{ pixels map to 7} \]
\[r_6 \rightarrow s_6 = 7 \Rightarrow 245 + 122 + 81 = 458 \text{ pixels map to 7} \]
\[r_7 \rightarrow s_7 = 7 \Rightarrow 245 + 122 + 81 = 458 \text{ pixels map to 7} \]
Histogram Equalization Example 1

before

after
Histogram Equalization Example 2
Histogram Equalization Example 3
Histogram Equalization Example 4
Histogram Equalization Example 5
Histogram Equalization Example 6
Summary

- Edge Detection
- Noise and Smoothing
- Canny Edge Detector
- Histograms
- Histogram Equalization
Programming Assignment #1

• Image display and filtering
• **Deadline:** September 10, 2015.

• REMINDERS
 – Deadline for PA0 (Bonus) is 3rd September, 2015.
 – Submit online.