Motivation

• A limitation of active contours based on parametric curves of the form \(f(s) \) (snakes, b-snakes,…) is that it is challenging to change the topology of the curve as it evolves.
Motivation

• A limitation of active contours based on parametric curves of the form $f(s)$ (snakes, b-snakes,...) is that it is challenging to change the topology of the curve as it evolves.

• If the shape changes dramatically, curve reparameterization may also be required.
Motivation

• A limitation of active contours based on parametric curves of the form $f(s)$ (snakes, b-snakes,...) is that it is challenging to change the topology of the curve as it evolves.
• If the shape changes dramatically, curve reparameterization may also be required.
• An alternative representation for such closed contours is to use **level sets (LS)**.
 – LS evolve to fit and track objects of interest by modifying the underlying embedding function instead of curve function $f(s)$
Basics of Level Sets

Energy measures the consistency of the image statistics inside and outside the regions.

Cremers, Rousson, and Deriche 2007
Image Segmentation with Level Sets

- Contour evolution (*Sethian and Osher, 1988*)
- Level sets for closed contours
 - Zero-crossing(s) of a characteristic function define the curve
 - Fit and track objects of interest by modifying the underlying embedding function $\phi(x, y)$ instead of the curve $f(s)$
 - Efficient algorithm
 - A small strip around the locations of the current zero-crossing needs to be updated at each step

Fast Marching Methods
Moving Interfaces

- 2D Moving Curves
- 3D Moving Surfaces

Ex:
- Interfaces between water and oil
- Propagating front of bush fire
- Deformable elastic solid
Evolving Curves and Surfaces

- Propagate curve according to speed function \(v = F n \)
- \(F \) depends on space, time, and the curve itself
- Surfaces in three dimensions

Tangential motion does not change the interface!

Only velocity component normal to surface is important!
Describe curve as Level Sets of a Function

\[\phi(x, y) = x^2 + y^2 - 1 = 0 \]

Isocontour is the unit circle (implicit representation.)
Describe curve as Level Sets of a Function

\[\phi(x, y) = x^2 + y^2 - 1 = 0 \]

A few isocontours of two dimensional function (circle)
Along with some representative normals.

GRADIENT:

\[\nabla \phi = \left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y} \right) \]
Describe curve as Level Sets of a Function

Then, unit normal (outward) is

\[\vec{N} = \frac{\nabla \phi}{|\nabla \phi|} \]
Describe curve as Level Sets of a Function

Then, unit normal (outward) is

\[\vec{N} = \frac{\nabla \phi}{|\nabla \phi|} \]

On Cartesian grid, we need to approximate this equation (ex. Finite difference techniques):

\[\frac{\partial \phi}{\partial x} \approx \frac{\phi_{i+1} - \phi_i}{\Delta x} \]
Describe curve as Level Sets of a Function

Then, unit normal (outward) is

\[
\vec{N} = \frac{\nabla \phi}{|\nabla \phi|}
\]

On Cartesian grid, we need to approximate this equation (ex. Finite difference techniques):

\[
\frac{\partial \phi}{\partial x} \approx \frac{\phi_{i+1} - \phi_i}{\Delta x}
\]

Mean curvature of the interface is defined as the divergence of the normal \(\vec{N} = (n_1, n_2) \)

\[
\kappa = \nabla . \vec{N} = \frac{\partial n_1}{\partial x} + \frac{\partial n_2}{\partial y} = \nabla . \left(\frac{\nabla \phi}{|\nabla \phi|} \right)
\]
Describe curve as Level Sets of a Function

Then, unit normal (outward) is

$$\vec{N} = \frac{\nabla \phi}{|\nabla \phi|}$$

On Cartesian grid, we need to approximate this equation (ex. Finite difference techniques):

$$\frac{\partial \phi}{\partial x} \approx \frac{\phi_{i+1} - \phi_i}{\Delta x}$$

Mean curvature of the interface is defined as the divergence of the normal $\vec{N} = (n_1, n_2)$

$$\kappa = \nabla \cdot \vec{N} = \frac{\partial n_1}{\partial x} + \frac{\partial n_2}{\partial y} = \nabla \cdot \left(\frac{\nabla \phi}{|\nabla \phi|} \right)$$
Describe curve as Level Sets of a Function
Variational Formulations and LS

• Transition from Active Contours:
 – contour v(t) \rightarrow front $\gamma(t)$
 – contour energy \rightarrow forces F_A, F_C
 – image energy \rightarrow speed function k_i

• Level set:
 – The level set c_0 at time t of a function $\psi(x,y,t)$ is the set of arguments $\{ (x,y), \psi(x,y,t) = c_0 \}$
 – Idea: define a function $\psi(x,y,t)$ so that at any time,
 $$\gamma(t) = \{ (x,y), \psi(x,y,t) = 0 \}$$
 • there are many such ψ
 • ψ has many other level sets, more or less parallel to γ
 • only γ has a meaning for segmentation, not any other level set of ψ
Level Set Framework

Usual choice for ψ: signed distance to the front $\gamma(0)$

$$
\psi(x,y,0) = \begin{cases}
- d(x,y, \gamma) & \text{if } (x,y) \text{ inside the front} \\
0 & \text{on} \\
d(x,y, \gamma) & \text{outside}
\end{cases}
$$

\[
\begin{array}{cccccccccccc}
7 & 6 & 5 & 4 & 4 & 4 & 3 & 2 & 1 & 1 & 1 & 1 & 2 & 3 & 4 & 5 \\
6 & 5 & 4 & 3 & 3 & 3 & 2 & 1 & 0 & 0 & 0 & 1 & 2 & 3 & 4 \\
5 & 4 & 3 & 2 & 2 & 2 & 1 & 0 & -1 & -1 & -1 & 0 & 1 & 2 & 3 \\
4 & 3 & 2 & 1 & 1 & 1 & 0 & -1 & -2 & -2 & -2 & -1 & 0 & 1 & 2 \\
3 & 2 & 1 & 0 & 0 & 0 & -1 & -2 & -3 & -3 & -2 & -2 & -1 & 0 & 1 & 2 \\
2 & 1 & 0 & -1 & -1 & -1 & -2 & -3 & -3 & -2 & -2 & -1 & 0 & 1 & 2 & 3 \\
2 & 1 & 0 & -1 & -2 & -2 & -2 & -3 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\
2 & 1 & 0 & -1 & -2 & -2 & -2 & -2 & -2 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\
3 & 2 & 1 & 0 & -1 & -1 & -1 & -1 & -1 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\
4 & 3 & 2 & 1 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\
5 & 4 & 3 & 2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
6 & 5 & 4 & 3 & 2 & 2 & 2 & 2 & 1 & 1 & 1 & 2 & 3 & 4 & 5 & 6
\end{array}
\]
Lecture 16: Deformable Models and Segmentation

Level Set Framework

- no movement, only change of values
- the front may change its topology
- the front location may be between samples

\[\psi(x, y, t) + \Delta \psi(x, y, t) = \psi(x, y, t+1) \]

\[\psi(x, y, t) \]
Level Set

Segmentation with LS:

• Initialise the front $\gamma(0)$
• Compute $\psi(x,y,0)$
• Iterate:
 $$\psi(x,y,t+1) = \psi(x,y,t) + \Delta \psi(x,y,t)$$
 until convergence
• Mark the front $\gamma(t_{\text{end}})$
Recap: Variational Formulations and LS

- Transition from Active Contours:
 - contour \(v(t) \) → front \(\gamma(t) \)
 - contour energy → forces \(F_A, F_C \)
 - image energy → speed function \(k_i \)

- Level set:
 - The level set \(c_0 \) at time \(t \) of a function \(\psi(x,y,t) \) is the set of arguments \(\{ (x,y) , \psi(x,y,t) = c_0 \} \)
 - Idea: define a function \(\psi(x,y,t) \) so that at any time,
 \[
 \gamma(t) = \{ (x,y) , \psi(x,y,t) = 0 \}
 \]
 - there are many such \(\psi \)
 - \(\psi \) has many other level sets, more or less parallel to \(\gamma \)
 - only \(\gamma \) has a meaning for segmentation, not any other level set of \(\psi \)
Front Propagation

\[\frac{\partial \psi}{\partial t} + \left(k_I \right) \cdot \left(F_A + F_G(\kappa) \right) \cdot \left\| \nabla \psi \right\| = 0 \]

- **ψ(x,y,t+1) - ψ(x,y,t)**
 - extension of the speed function \(k_I \)
 - (image influence)

- **constant “force” (balloon pressure)**
 - \(\kappa = \text{div} \left(\frac{\nabla \psi}{\| \nabla \psi \|} \right) \)

- **kappa**
 - \(\kappa = \text{div} \left(\frac{\nabla \psi}{\| \nabla \psi \|} \right) \)
 - (contour influence)

- **smoothing “force” depending on the local curvature \(\kappa \)**
 - spatial derivative of \(\psi \)
 - product of influences

- **link between spatial and temporal derivatives, but not the same type of motion as contours!**

- \(\psi \) link between spatial and temporal derivatives, but not the same type of motion as contours!
Front Propagation

- Speed function:
 - k_I is meant to stop the front on the object’s boundaries
 - similar to image energy: $k_I(x,y) = 1 / (1 + || \nabla I(x,y)||)$
 - only makes sense for the front (level set 0)
 - yet, same equation for all level sets
 → extend k_I to all level sets, defining \hat{k}_I

- possible extension:

 $$\hat{k}_I(x,y) = k_I(x',y')$$

 where (x',y') is the point in the front closest to (x,y)

 (such a $\hat{k}_I(x,y)$ depends on the front location)
LS Algorithm

1. compute the speed k_I on the front
 extend it to all other level sets

2. compute $\psi(x,y,t+1) = \psi(x,y,t) + \Delta \psi(x,y,t)$

3. find the front location (for next iteration)
 modify $\psi(x,y,t+1)$ by linear interpolation

$\psi(x,y,t)$
Narrow Band Extension

• Weaknesses of algorithm 1
 – update of all $\psi(x,y,t)$: inefficient, only care about the front
 – speed extension: computationally expensive

• Improvement:
 – narrow band: only update a few level sets around γ
 – other extended speed: $k_i(x,y) = 1 / (1 + || \nabla I(x,y) ||)$
Narrow Band Extension

• Caution:
 – extrapolate the curvature κ at the edges
 – re-select the narrow band regularly:
 an empty pixel cannot get a value
 \rightarrow may restrict the evolution of the front
Summary of LS

• Level sets:
 – function $\psi : [0, I_{\text{width}}] \times [0, I_{\text{height}}] \times N \rightarrow \mathbb{R}$
 – $(x, y, t) \rightarrow \psi(x,y,t)$
 – embed a curve γ: $\gamma(t) = \{ (x,y), \psi(x,y,t) = 0 \}$
 – $\gamma(0)$ is provided externally, $\psi(x,y,0)$ is computed
 – $\psi(x,y,t+1)$ is computed by changing the values of $\psi(x,y,t)$
 – changes using a product of influences
 – on convergence, $\gamma(t_{\text{end}})$ is the border of the object

• Issue:
 – computation time (improved with narrow band)
Examples
Summary of Boundary Based Methods

• Curves: object boundaries

• **Intelligent scissors (live-wire)**
 – sketch in real time a curve that clings to object boundaries

• **Snakes**
 – energy-minimizing, 2D spline curve that evolves towards image features such as strong edges

• **Level set**
 – Evolve the curve as the zero-set of a characteristic function,
 – Easily change topology and incorporate region-based statistics
Applications: Contour Tracking and Rotoscoping

- Track facial features for performance-driven animation
- Track heads and people, moving vehicles
- Medical image segmentation (CT image)
- Rotoscoping

Agarwala, Hertzmann, Seitz et al. (2004)
Applications: Image Restoration

SNR is approximately 3

Original Image
Applications: Image Restoration
Applications: Reconstruction of Surfaces from Unorganized Data Points

Reconstruction of a rat brain from data of MRI slices
• Localized appearance, top-down shape information and level set were combined to segment and track people in videos.
CVPR 2005: Level Set Segmentation (1800 citation)

- Ultrasound image segmentation.

- Chunming Li et al. LS Evolution without reinitialization: a new variational formulation.
Application: Vein Segmentation
Slice Credits and References

- Osher and Paragios (2003), Paragios, Faugeras, Chan et al. (2005), Paragios and Sgallari (2009)
- G. Strang, Lecture Notes, MIT.
- R. Szeliski, Lecture Presentations.
- Sethian, JA. Fast Marching. PNAS 1996.
- Osher and Fedkiw. Level set methods and dynamic implicit surfaces.
- Lim, Bagci, and Li. IEEE TBME 2013 [Willmore Flow and Level Set]