Visual Analysis of Evolutionary Algorithms
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Abstract- The non-linear complexity of evolutionary algo-
rithms (EAs) make them a challenge to understand. The
difficulty in performing detailed analyses of an EA is in
sorting through the large amount of of data that can be
generated in a single run. This paper describes a visual-
ization tool that facilitates navigation through the details
of an EA run. The visualization tool organizes and dis-
plays EA data at various levels of detail and allows for
easy transitions between related pieces of data.

1 Introduction

The large numbers of complex, non-linear interactions that
compose evolutionary algorithms (EAs) make them difficult
to analyze and a challenge to understand. The most com-
mon methods of evaluating EAs, which include evolution-
ary programming, evolutionary strategies, and genetic algo-
rithms (GAs), focus on overall performance and gross popu-
lation statistics. Such methods include comparing the num-
ber of function evaluations required to find an acceptable so-
lution, the quality of the solution found, or the rate of in-
crease of the population fitness. The effectiveness of specific
mechanisms such as crossover may be estimated by compar-
ing the overall performance of an EA with and without that
mechanism turned on. While such measurements are im-
portant and provide useful top-down information about EA
runs, focusing only on this information could cause us to
miss other important details. For example, several studies
have investigated the effects of non-coding regions on GA
performance. These regions were expected to improve per-
formance by providing a buffer against the disruptive effects
of crossover; however, comparisons revealed little difference
in overall GA performance (Forrest & Mitchell, 1992; Wu &
Lindsay, 1995). A later study which examined the details of
reproduction events found that non-coding regions did indeed
reduce the disruptive effects of crossover in building blocks
(Wu, Lindsay & Riolo, 1997). In fact, non-coding regions
reduced crossover’s total activity within building block re-
gions, including crossover’s ability to construct new building
blocks. This decrease in construction appeared to cancel out
any advantage gained from the expected decrease in disrup-
tion, resulting in little noticeable improvement in overall per-
formance. Such complex, non-linear interactions exist in all

types of EAs and suggest that, to fully understand how EAs
work, we must examine not only the end result of EA runs
but also the means to the end.

The difficulty in performing such analyses lies in sorting
through the large amount of data that can be generated in a
single EA run. While all of the data from an EA run can easily
be saved into files, accessing and interpreting such a large
amount of information is no trivial task. The development
of tools for sorting, organizing and displaying such databases
could greatly facilitate the access and analysis of such data.
Desirable capabilities of such tools include the ability to do
the following:

o to examine individuals and their encodings in detail

¢ to trace the source and survival of building blocks or
partial solutions

o to trace family trees
o to examine the effects of genetic operators

e to examine populations for convergence, speciation,
etc.

o to trace gross population statistics and trends
o to move freely in time and through populations.

One approach to this problem is off-line visualization. We
have developed such a system, called VIS, to facilitate anal-
ysis of data from the Virtual Virus (VIV) project (Burke, De
Jong, Grefenstette, Ramsey & Wu, 1999). VIS takes advan-
tage of the effectiveness of graphical representations and the
flexibility of a “clickable” links to provide a navigation tool
for accessing and displaying data. In the rest of this paper,
we will summarize previous approaches to visualizing EAs
and describe the VIS system and how it addresses some of
the desired capabilities listed above. Though the examples
shown in this paper are primarily from the VIV project which
is based on a GA, the VIS program can easily be extended to
support other EA data.

2 Background

Graphical visualization techniques are some of the simplest
and at the same time most powerful methods for analyzing
and communicating information (Tufte, 1983). Well designed



graphical elements can convey large amounts of information
in very concise and compact formats. In addition, the hu-
man vision system is extremely sensitive to graphical pat-
terns, making graphical representations an extremely useful
analysis tool.

Visualization techniques have been used to study EAs both
on-line and off-line. On-line systems allow users to closely
follow and evaluate the progress of an EA and, in some
cases, may allow users to interactively influence or guide the
direction of evolution of the system (Collins, 1998; Jones,
1993). Off-line systems use visualization techniques to dis-
play information about an EA run after it is complete and
may allow the display of data from multiple times of a run
and movement both forwards and backwards in the evolu-
tionary process (Shine & Eick, 1997). The most basic dis-
plays that have been used include population data matrices
which simply present an entire population in raw text for-
mat and two-dimensional plots of individual aspects of the
population (such as best or average fitness) with respect to
time. More complex techniques have focused on how to dis-
play more substantial information about entire populations.
Examples include methods for displaying the distribution of
the population in the solution space (Collins, 1997; Collins,
1998; Nassersharif, Ence & Au, 1994; Shine & Eick, 1997),
allele frequencies (Collins, 1997; Wu & Lindsay, 1996), the
formation and variation of species (Spears, 1994), and the an-
cestry of individuals (Spears, 1994) from generation to gen-
eration. The multi-dimensional nature of EA systems makes
this a balancing act between the clarity of the display and the
amount of information that can be included.

3 Overview of system

VIS is an off-line visualization program developed to facili-
tate the examination and analysis of GA runs. This system
was designed with two main goals in mind.

e Provide users with a tool with which they can exam-
ine the details of a GA run. The tool should provide
easy access to desired information and easy transitions
between related pieces of information.

e Develop novel methods and representations for dis-
playing multi-dimensional data in a coherent and in-
formative manner.

VIS is organized as a collection of windows that display data
at varying levels of resolution. Within these windows, VIS
combines graphical and textual displays to allow users to
view “snapshots” in time from a GA run, to examine spe-
cific individuals and populations from a run, and to navigate
forwards and backwards through a run. “Clickable” elements
in the displays link related pieces of information and allow
users to easily move through time and among the populations
of a GA run.

Whereas most of the systems described in section 2 focus
on ways to display the contents and evolution of entire pop-

ulations and an EA’s progress in the solution space, the goal
of the VIS tool is to make the data from individual GA runs
available and easily accessible for observation and analysis.
As aresult, VIS focuses less on developing abstract represen-
tations which may average, interpolate, or otherwise lose de-
tails, and more on displaying complete information and pro-
viding navigation capabilities for moving from one part of a
run to another.

Because VIS is an off-line system, it is used only after a
GA run is complete. Any GA run that is to be analyzed must
generate a set of data files containing all of the information
necessary for VIS to completely reconstruct the run. Details
about files and formats are given in (Grefenstette, Burke, De
Jong, Ramsey & Wu, 1997).

3.1 Representation of individuals

The most important elements of a GA are the individuals from
the GA populations. These individuals represent potential so-
lutions to the problem to be solved and are typically encoded
as strings of characters or values. The ability to examine the
formation and structure of individuals in a GA is one of the
main purposes for developing the VIS tool. As a result, how
we represent or display individuals is very important. VIS
is able to display the individuals of a GA run in both tex-
tual and graphical representations. Graphical representations
can enhance analysis of textual information for several rea-
sons. Color blocks or strips are both easier to distinguish and
require less space than individual characters or letters (allow-
ing display of longer individuals). In addition, similarities
and differences in color strip patterns are very easy for hu-
man vision system to detect, facilitating the comparison of
multiple individuals.

VIS allows users to select from several different methods
of representing individuals. While current representations fo-
cus on discrete alphabets — binary and multi-character — VIS
can easily be extended to support floating-point representa-
tions and other problem-specific representations as needed.
Table 1 shows examples of the currently available representa-
tions. The Genotype representation displays each individual
as a string of characters. For binary alphabets, the characters
will be either zero (0) or one (1). Alternative representations
that use more than two values may be composed of other char-
acters. This representation can be used for all alphabets. The
Zebra representation works with binary alphabets and dis-
plays individuals as a series of black and white stripes. A
black stripe represents a O; a white stripe representsa 1. The
Neopolitan representation also works with binary alphabets.
This representation assigns one color to each pair of charac-
ters. There are four possible pairs of characters; an exam-
ple color coding scheme would be: 00 = black, 11 = white,
01 =magenta, 10 = orange. This representation is especially
sensitive to shifts, insertions, and deletions of one character.
The Color coded representation works with multi-character
alphabets and assigns a unique color to each letter of the al-
phabet. Individuals are represented as a series of multicolored



Name Representation Alphabet
Genotype 331230100311223023302303213050230001203 |

Zebra LRI JUIEL T LR A i m i m | ginary
seoporitan | MU IR 0L TTOUAMMER 1100 WOWmIT 0T | ginary

cour cotor | IMURET T A MUORAURRE Y AR NNY ORI AN T | yiocraracter
Gene locations | I EG_—G I | \:rious

Table 1: Available VIS representations of individuals.

stripes. For example, the following color coding scheme was
used for the VIV alphabet: A = blue, C = red, G = yellow,
T = green. The Gene location works with problems in which
groups of characters together compose building blocks or par-
tial solutions. Each building block is displayed in a unique
color on an individual. This representation is especially use-
ful for tracing the construction, propagation, and disruption
of building blocks.

3.2 Examining individuals

One of the most basic capabilities needed for studying GAs
is easy and direct access to any individual of a run. Because
individuals are the most basic elements of a GA, the abil-
ity to examine them in detail, in effect, gives us the ability
to reconstruct events from any portion or all of a run. Be-
cause solutions are encoded as individuals, examining the fit-
ness and composition of an individual essentially allows us to
evaluate a GA’s progress at a particular moment of a run. Par-
ent and offspring comparisons can reveal the dynamics about
reproduction events and how effectively information is con-
structed, propagated, and disrupted by various genetic oper-
ators. Easy access to the “family members” of an individual
gives us the ability to trace the discovery and inheritance of
information from generation to generation.

VIS provides some of these capabilities with its Individ-
ual window. An Individual window displays all relevant data
associated with a given individual. Two formats are available:
the Data format displays the vital statistics for an individ-
ual and the Family format displays a graphical representa-
tion of a complete family (an individual, its parents, and its
offspring). Figure 1 shows an example of the Data format.
The following information is included in this display.

e The index of the individual. Each individual is arbi-
trarily assigned an index number to distinguish it from
other individuals in the same generation.

e The generation to which the individual belongs.
e The fitness of the individual.
o The length of the individual in bits.

e The genotype of the individual. Available representa-
tions are shown in Table 1. The example in Figure 1
uses the Color coded representation.

e The genotype, index, and length of the individual’s par-
ents. Users may click on a parent genotype to open a
new Individual window for that parent.

e The mutations, if any, involved in creating this individ-
ual. Mutation locations listed and are marked in color.

e The crossover points, if any, involved in creating this
individual. If crossover occurred, the portion that
each parent contributed to the individual is indicated
in color. If crossover did not occur, the individual was
cloned from Par ent 1.

e Any problem specific information such as genes or
reading frames.

Figure 2 shows an example of the Family format. Clicking
on a parent or offspring representation in either the Data or
Family display opens a new Individual window for the se-
lected individual.

3.3 Examining populations

In addition to examining individuals in isolation, it is also im-
portant to understand how individuals relate to other individ-
uals in the population. Well designed graphical displays of a
population can facilitate the detection of patterns or trends
in the population that may suggest convergence or specia-
tion. Overall characteristics such as diversity, convergence,
and level of speciation can be important indicators of a GA’s
progress.

A Population window, shown in Figure 3, displays the
individuals of a population in a scrollable window. allow-
ing users to browse entire population. Three types of formats
are available in Population windows: Individual, Statistics,
and Histogram. The Individual format, shown in Figure 3,
displays the individuals of a population and their index and
fitness values. The Statistics format, shown in Figure 4, dis-
plays statistics for each individual in a population. For both of
the above windows, users may click on a specific individual
or its index to open a new Individual window for that indi-
vidual. The Histogram format, shown in Figure 5, displays a
histogram of the fitnesses of the individuals in the population.
This display is particularly useful for examining the diversity
of a population.
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Figure 1: An Individual window showing the Data format.
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Figure 2: An Individual window showing the Family format.

3.4 Examining runs

In addition to providing access to very specific details from a
run, VIS also displays data relating to an entire run. Tracking
gross population and run statistics provide a general idea of
GA performance. Such data may contain useful information
on trends through time as well as indications of areas (mo-
ments) that merit further investigation.

A Run window displays data over the entire run. The Best
and Median formats display the best or median individuals,
respectively, from each generation of a run. Figure 6 shows
an example of a Best format. Users may click on an indi-
vidual to open a new Individual window for that individual
or click on a generation number to open a new Population

window for that generation. The Consensus format, shown
in Figure 7, displays statistics and a “consensus” individual
for each generation of a run. The consensus individual shows
the most common ordering of genes in a population.

4 Summary and future work

The VIS tool is an off-line visualization program developed
to facilitate the examination and analysis of GAs. Instead of
focusing solely on methods for displaying a GA’s progress in
a solution space, VIS concentrates on ways to make all of the
details of a run available and easily accessible. This tool al-
lows users to examine snapshots of a GA run and investigate
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Figure 3: A Population window showing the Individual format.

questions such as how were the pieces of a solution assem-
bled, when and why did a population converge, and what are
the immediate effects of variation of parameters such as pop-
ulation size or selection method. We have found VIS to be
an extremely useful tool for examining details of a GA run
beyond the average and best fitness for each population. VIS
allows us to focus in on specific details of interest, keeping
related data easily accessible and all other data available. It
has been especially useful in situations where we would oth-
erwise need to print out unmanageable amounts of data just
to find or examine a few specific examples.

The VIS tool played an integral role in our analyses of ex-
periments from the VIV project. Using VIS, we were able
to find specific examples to verify that, given the opportu-
nity, a GA will retain backup copies of useful information
and use this backup information if primary information is dis-
rupted. In addition, we were able to examine the convergence
of populations and the effects of genetic operators in detail.
Full descriptions of these studies can be found in (Burke, De
Jong, Grefenstette, Ramsey & Wu, 1999; Ramsey, De Jong,
Grefenstette, Wu & Burke, 1998). We have also found the
VIS tool to be extremely useful for developmental and veri-
fication purposes. In the development of new GA programs
and applications, using a visualization tool to verify new rep-
resentations and methods can be significantly easier and less
time consuming than the alternative of printing out and veri-
fying information on paper or on screen. In essence, VIS can
be thought of as a debugger, but at the algorithmic level rather
than the code level.

Future work on this project includes the continued devel-
opment of effective displays of individual and population data
and interactive sorting capabilities. We would like to extend
graphical representations of individuals to support additional
problem representations, including floating point values and
possibly two-dimensional structural representations. In addi-
tion, we also plan to add automated data collection and statis-
tical analysis options to collect, calculate, and plot data such

as the number of offspring generated or the discovery and loss
of partial solutions over entire runs or populations.
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