
Bloom	Filters,	Minhashes,	
and	Other	Random	Stuff

Brian	Brubach
University	of	Maryland,	College	Park

StringBio 2018,	University	of	Central	Florida

What?

• Probabilistic
• Space-efficient
• Fast
• Not	exact

Why?

• Data	deluge/Big	data/Massive	data
• Millions	or	billions	of	sequences
• Human	genome:	3	Gbp
• 1	giga base	pairs	=	1	billion	characters

• Microbiome	sample	of	1.6	billion	100	bp reads	
generated	in	10.8	days	(Caporaso,	et	al.,	2012)
• Medium	data,	but	on	a	laptop
• Lots	of	bioinformatics	happens	here

• Beyond	scalability	of	BWT,	FM-index,	etc.

(Berger,	Daniels,	and	Yu,	2016)

Curse	of	Dimensionality	

• Sequences	are	compared	in	high	dimensional	space
• Comparing	𝑁 sequences	takes	𝑁" time
• Computing	edit	distance	between	two	sequences	
of	length	𝑛 takes	𝑛" time
• Allegedly

Curse	of	Dimensionality	
• ATGATCGAGGCTATGCGACCGATCGATCGATTCGTA
• ATGATGGAGGCTATGGGAACGATCGATCGACTCGTA
• ATGATCGAGGCTATGCCACCGATCGAACGATTCGTA
• ATCATCGAGGCTATGCGACCGTTCGATCGATTCCTA
• GTGATCGTGGCTATGCGACCGATCGATCGATTCGTC
• ATGATCGAGGCTATGCCACCGATCGAACGATTCGTA
• ATGATCCAGGCTATGCGACCGATCGATGCATTCGTA

Why	Stay	in	High	Dimensions?

• 4%&& possible	DNA	strings	of	length	100
• 4%' 	≈ 1	billion	reads	

k-mers of	a	Sequence

• All	substrings	of	length	k
• Canonical:	lexicographically	smallest	among	
forward	and	reverse	complement
• Forget	this	for	now All 7-mers:

ATCTGAGGTCAC
ATCTGAG
TCTGAGG
CTGAGGT
TGAGGTC
GAGGTCA
AGGTCAC

Reverse complement:
ATCTGAGGTCACGTGACCTCAGAT

Hash	function

String Hash
Magic Random	integer	in	{1,	m}

• Will	assume	idealized	model	of	hashing	for	this	talk
• Lots	of	research	in	this	area

Bloom	Filter	Example	Problem

• Store	a	large	set	of	𝑁 𝑘-mers
• Query	𝑘-mers against	it	for	exact	matches
• Want	speed	and	space-efficiency

Bloom	Filter	Example	Problem

• Store	a	large	set	of	𝑁 𝑘-mers
• Query	𝑘-mers against	it	for	exact	matches
• Want	speed	and	space-efficiency
• How	can	we	address	this	with	hashing?

Bloom	Filter	Example	Problem

• Store	a	large	set	of	𝑁 𝑘-mers
• Query	𝑘-mers against	it	for	exact	matches
• Want	speed	and	space-efficiency
• How	can	we	address	this	with	hashing?
• Put	𝑘-mers in	hash	table

Bloom	Filter	Example	Problem

• Store	a	large	set	of	𝑁 𝑘-mers
• Query	𝑘-mers against	it	for	exact	matches
• Want	speed	and	space-efficiency
• How	can	we	address	this	with	hashing?
• Put	𝑘-mers in	hash	table
• At	least	2𝑁𝑘 bits	for	data	plus	table	overhead

Bloom	Filter	Example	Problem

• Store	a	large	set	of	𝑁 𝑘-mers
• Query	𝑘-mers against	it	for	exact	matches
• Want	speed	and	space-efficiency
• How	can	we	address	this	with	hashing?
• Put	𝑘-mers in	hash	table
• At	least	2𝑁𝑘 bits	for	data	plus	table	overhead

• What	if	we	just	store	one	bit	at	each	hash	for	
presence/absence?
• Simple	Bloom	filter,	potentially	suboptimal

Bloom	Filter

• Probabilistic	data	structure
• Fast	and	space-efficient
• False	positives,	but	no	false	negatives
• Insert	and	contains,	but	no	delete
• Due	to	Burton	Howard	Bloom	in	1970
• Gave	example	of	automatic	hyphenation
• Identify	the	10%	of	words	that	require	special	
hyphenation	rules

Bloom	Filter

• 𝑁 items	to	store:	𝑥%, 𝑥", … , 𝑥/
• 𝑚-bit	vector
• 𝑑 hash	functions:	ℎ%, ℎ", … , ℎ3
• Insert(𝑥):	set	bits	ℎ%(𝑥), ℎ"(𝑥), … , ℎ3(𝑥) to	1
• Contains(𝑦):	
• Yes	if	bits	ℎ%(𝑦), ℎ"(𝑦), … , ℎ3(𝑦) are	1
• No	if	any	are	0

• 𝑚 = 10,	𝑑 = 3,	hash	functions:	ℎ%, ℎ", ℎ;

Bloom	Filter	Example

0 0 0 0 0 0 0 0 0 0

• 𝑚 = 10,	𝑑 = 3,	hash	functions:	ℎ%, ℎ", ℎ;

Bloom	Filter	Example

0 1 1 0 0 0 1 0 0 0

Insert(𝑥%):ℎ% 𝑥% , ℎ" 𝑥% , ℎ;(𝑥%)

• 𝑚 = 10,	𝑑 = 3,	hash	functions:	ℎ%, ℎ", ℎ;

Bloom	Filter	Example

0 1 1 0 0 0 1 1 0 1

Insert(𝑥%):ℎ% 𝑥% , ℎ" 𝑥% , ℎ;(𝑥%) Insert(𝑥"):ℎ% 𝑥" , ℎ" 𝑥" , ℎ;(𝑥")

• 𝑚 = 10,	𝑑 = 3,	hash	functions:	ℎ%, ℎ", ℎ;

Bloom	Filter	Example

0 1 1 0 0 0 1 1 0 1

Insert(𝑥%):ℎ% 𝑥% , ℎ" 𝑥% , ℎ;(𝑥%) Insert(𝑥"):ℎ% 𝑥" , ℎ" 𝑥" , ℎ;(𝑥")

Contains(𝑥"):ℎ% 𝑥" , ℎ" 𝑥" , ℎ;(𝑥")

• 𝑚 = 10,	𝑑 = 3,	hash	functions:	ℎ%, ℎ", ℎ;

Bloom	Filter	Example

0 1 1 0 0 0 1 1 0 1

Insert(𝑥%):ℎ% 𝑥% , ℎ" 𝑥% , ℎ;(𝑥%) Insert(𝑥"):ℎ% 𝑥" , ℎ" 𝑥" , ℎ;(𝑥")

Contains(𝑥"):ℎ% 𝑥" , ℎ" 𝑥" , ℎ;(𝑥")
Contains(𝑦):ℎ% 𝑦 , ℎ" 𝑦 , ℎ;(𝑦)

• 𝑚 = 10,	𝑑 = 3,	hash	functions:	ℎ%, ℎ", ℎ;

Bloom	Filter	Example

0 1 1 0 0 0 1 1 0 1

Insert(𝑥%):ℎ% 𝑥% , ℎ" 𝑥% , ℎ;(𝑥%) Insert(𝑥"):ℎ% 𝑥" , ℎ" 𝑥" , ℎ;(𝑥")

Contains(𝑥"):ℎ% 𝑥" , ℎ" 𝑥" , ℎ;(𝑥")
Contains(𝑦):ℎ% 𝑦 , ℎ" 𝑦 , ℎ;(𝑦)

False	Positive!

False	Positive	probability
• Pr[one	hash	misses	a	bit]

• 1 − %
=

• Pr[one	insertion	misses	a	bit]
• 1 − %

=

3

• Pr[all	insertions	miss	a	bit]
• 1 − %

=

3>

• Pr[a	single	bit	flipped	to	1]
• 1 − 1 − %

?

@A
≈ 1 − 𝑒C3>/=

• False	positive	probability	(assuming	independence)	
• 1 − 𝑒C3>/= 3

Optimal	parameters

• False	positive	rate	𝑝 ≈ 1 − 𝑒C3>/= 3

• False	positives	minimized	at	𝑑 = =
>
ln2

• Bits	per	item	=
>
≈ − HIJKL

HA"
≈ −1.44log"𝑝

• Approximate:	assuming	asymptotic,	independence,	and	
integrality	of	𝑑
• 𝑝 = 0.01,	needs	9.59	bits	per	item
• 𝑝 = 0.001,	needs	14.38	bits	per	item

• Number	of	hashes	𝑑 ≈ −log"𝑝

Properties

• Insert	and	check	in	𝑂(𝑑) time
• Independent	of	number	of	items	inserted

• Fast	and	parallel	to	compute	hashes
• Can	do	union	and	intersection	with	OR	and	AND	of	
bit	vectors
• Can	estimate	𝑁 if	unknown

Endless	Variations

• Deletions
• Counting
• Bloomier filters:	storing	values
• Cache	optimizations
• Distance	sensitive:	is	𝑥 close	to	the	set

𝑘-mer Bloom	Filter

• Can	we	do	better	if	we	know	the	items	are	𝑘-mers
from	a	genome?

𝑘-mer Bloom	Filter

• Can	we	do	better	if	we	know	the	items	are	𝑘-mers
from	a	genome?
• Observation:	the	“items”	are	overlapping	substrings	
from	a	4	letter	alphabet

𝑘-mer Bloom	Filter

• Can	we	do	better	if	we	know	the	items	are	𝑘-mers
from	a	genome?
• Observation:	the	“items”	are	overlapping	substrings	
from	a	4	letter	alphabet
• After	getting	positive,	
• Check	all	4	preceding	𝑘-mers and	all	4	following	𝑘-mers
• One	must	be	in	the	set	for	a	true	positive
• False	positive	next	to	another	positive	less	likely

• Can	reduce	false	positives	or	space
• (Pellow,	Filippova,	and	Kingsford,	2017)

ATCC
xATC
TCCx

Bio	Applications

• Pan-genome	storage
• Bloom	filter	trie (Holley,	Wittler,	and	Stoye,	2015)

• Short-read	RNA-seq database
• Split	Sequence	Bloom	tree	(Solomon	and	Kingsford,	
2016)

• Succinct	de	Bruijn graphs
• Probabilistic	de	Bruijn graph	(Pell,	et	al.,	2011)
• Exact	version	(Chikhi and	Rizk,	2012)

• Human	genome:	3	Gbp,	𝑘 = 27,	3.7	GB,	13.2	bits	per	vertex

Locality	Sensitive	Hashing	(LSH)

• What	do	we	typically	want	to	avoid	when	hashing?

Locality	Sensitive	Hashing	(LSH)

• What	do	we	typically	want	to	avoid	when	hashing?
• Collisions!

• Approximate	nearest	neighbors:	towards	removing	
the	curse	of	dimensionality	(Indyk and	Motwani,	
1998)
• Idea:	get	similar	elements	to	hash	together
• “Its	key	ingredient	is	the	notion	of	locality-sensitive	
hashing which	may	be	of	independent	interest;…”	

Comparing	Two	Sequences

• Mash:	fast	genome	and	metagenome	distance	
estimation	using	MinHash (Ondov et	al.,	2016)
• Let	𝐴 and	𝐵 be	two	DNA	sequences	to	compare
• Construct	𝑘-mer sets	𝐴 and	𝐵
• Assume	 𝐴 = |𝐵| for	now	(not	true)

• Compare	the	sets	somehow
• Not	faster	yet,	but	we’ll	get	there…

Jaccard Index

• Similarity	between	sets	𝐴 and	𝐵
• |U∩W||U∪W|

• Correlated	with	Average	Nucleotide	Identity	(ANI)
• Empirical	support,	but	debatable

Jaccard Index:	|U∩W|
|U∪W|

A B

Jaccard Index:	|U∩W|
|U∪W|

• What	would	you	do	if	you	were	studying	a	
population?

People	who	like	
peanut	butter

People	who	
like	jellyA B

Jaccard Index:	|U∩W|
|U∪W|

• What	would	you	do	if	you	were	studying	a	
population?	Sample!

People	who	like	
peanut	butter

People	who	
like	jellyA B

Sketch

• Small	“fingerprint”	of	a	data	point	(string)

A B

Warm-up:	Naïve	Sketch

• Sample	each	string	independently	(don’t	want	to	
do	𝑁" sketches	for	comparing	all	pairs	of	𝑁 strings)

A B

Warm-up:	Naïve	Sketch

• Sample	each	string	independently	(don’t	want	to	
do	𝑁" sketches	for	comparing	all	pairs	of	𝑁 strings)

A B

Warm-up:	Naïve	Sketch

A B

• Sample	each	string	independently	(don’t	want	to	
do	𝑁" sketches	for	comparing	all	pairs	of	𝑁 strings)
• Small	overlap

Minhashing/Bottom-𝑑 Sketch

• On	the	resemblance	and	containment	of	
documents	(Broder,	1997)
• For	comparing	documents

• Hash	each	𝑘-mer in	a	sequence
• Sketch	𝑆(𝐴):	smallest	𝑑 hash	values	in	𝐴
• Or	take	min	for	each	of	𝑑 different	hash	function

• Use	same	hash	function	for	𝑆 𝐴 and	𝑆(𝐵)
• Lets	us	sketch	each	string,	but	“simulate”	sketching	
the	union	𝑆(𝐴 ∪ 𝐵)
• Canonical	k-mers,	𝐴 and	𝐵 could	be	reverse	comps

Minhashing/Bottom-𝑑 Sketch

• Sample	smallest	𝑑 = 6 hashes	of	𝑘-mers in	each	
set

A B

Minhashing/Bottom-𝑑 Sketch

• Sample	smallest	𝑑 = 6 hashes	of	𝑘-mers in	each	
set

A B

10

3

9

2

4

7

1

5

8

Minhashing/Bottom-𝑑 Sketch

• Sample	smallest	𝑑 = 6 hashes	of	𝑘-mers in	each	
set

A B

10

3

9

2

4

7

1

5

8

This	can’t	happen

Comparing	sketches

• Jaccard	estimate	𝑗
• U∩W
U∪W ≈ |f(U∪W)∩f(U)∩f W |

f U∪W

• Get	𝑆 𝐴 ∪ 𝐵 by	merge	sort	operation	in	𝑂 𝑑 time
• Merge	until	𝑑 unique	hashes	seen
• Count	number	of	matches	𝑐 = 3
• 𝑗 = h

3

• Error	of	estimate	is	𝜖 = %
3�

𝑆 𝐴
2
3
4
7
9
10

𝑆 𝐴 ∪ 𝐵
1
2
3
4
5
7

𝑆 𝐵
1
2
4
5
7
8

Building	Bottom-𝑑 Sketch

• Takes	𝑂(𝑛	log	𝑑) time
• Traverse	string,	hashing	𝑘-mers
• Keep	sorted	list	of	smallest	𝑑
• Check	each	new	hash	against	max	in	list
• 𝑂 log	𝑑 time	to	insert	if	necessary

• Actually	expected	time	𝑂 𝑛 + 𝑑	log	𝑑	log	𝑛
• Because	Pr[𝑖th hash	gets	inserted	in	list]	= 3

m
• So	effectively	linear

Minhash parameters

• Probability	some	𝑘-mer 𝑥 appears	in	a	random	
genome	of	length	𝑛
• Pr 𝑥 ∈ 𝐴 ≈ 1 − 1 − Σ Cq >

• Alphabet	size	 Σ = 4

• For	𝑘 = 16,	𝑛 = 3Gbp:
• Probability	of	a	given	16-mer	in	a	genome	is	≈ 0.5
• ≈ 25% of	16-mers	expected	to	be	shared	between	two	
random	3	Gbp genomes
• Too	short	𝑘-mers can	overestimate	Jaccard,	especially	
for	distant	genomes
• Very	long	could	underestimate,	but	less	of	an	issue

Minhash parameters

• Value	of	𝑘 to	achieve	a	desired	probability	𝑞 of	
seeing	a	given	k-mer in	sequence	length	𝑛
• 𝑘 ≈ log u

> %Cv
v

• 5	Mbp genome,	𝑞 = 0.01, 𝑘 ≈ 14
• 3	Gbp genome,	𝑞 = 0.01,	𝑘 ≈ 19
• Mash	default:	k	=	21	and	s	=	1000	
• 8	kB	per	sketch	

Mash	distance

• Mash	distance	based	on	Jaccard estimate	𝑗
• − %

q ln
"x
%yx

• Based	on	Poisson	error	model
• Implicitly	uses	average	size	of	the	two	sets,	
penalizing	sets	of	different	size

Some	related	works

• Assembly	overlaps
• Assembling	large	genomes	with	single-molecule	
sequencing	and	locality-sensitive	hashing	(Berlin	et	al.,	
2015)

• Containment	for	different	size	sets
• Improving	Min	Hash	Via	the	Containment	Index	with	
Applications	to	Metagenomic Analysis	(Koslicki and	
Zabeti,	2017)

Implementation

• MurmurHash3
• Open	Bloom	Filter	Library
• Mash

Other	Random	Stuff

Other	Random	Stuff

Other	Random	Stuff

Fruit	Fly	Brains

• Locality	Sensitive	Hashing	(LSH)
• A	neural	algorithm	for	a	fundamental	computing	
problem	(Dasgupta,	Stevens,	and	Navlakha,	2017)

• Bloom	filters
• (Dasgupta,	Sheehan,	Stevens,	and	Navlakha,	upcoming)
• Have	3	special	properties

• Continuous-valued	novelty
• Distance	sensitivity
• Time	sensitivity

Thanks!

