Bloom Filters, Minhashes,
and Other Random Stuftf

Brian Brubach

University of Maryland, College Park

StringBio 2018, University of Central Florida
r

c /B $

/

/,
cC /B

Center FOR BioinFOrRmATICS & CompuTATIONALBIOLOGY ™ COMPUTER SCIENCE




What?

* Probabilistic
» Space-efficient
e Fast

* Not exact




Why?

* Data deluge/Big data/Massive data
* Millions or billions of sequences

* Human genome: 3 Gbp
* 1 giga base pairs = 1 billion characters

* Microbiome sample of 1.6 billion 100 bp reads
generated in 10.8 days (Caporaso, et al., 2012)

* Medium data, but on a laptop
 Lots of bioinformatics happens here

e Beyond scalability of BWT, FM-index, etc.



Computing Power

Genomic Data

-asegojry ‘eleq a1wouas

Aep Jad saied

2 ® o~ @ w ox o o
(=] (=) o o o o o (=] (=
—~ — ol ol —~ el Ll —~ ol
5 858 B & B 5 B Y S
—{ —{ — (| = — = ~—
SdoT4edaL
‘1amod bupndwo)

2004 2006 2008 2010 2012 2014
Year
(a)

2002

Aep Jad saed
-asego)ry ‘eyeq o1wouds

T o R R R T o I o I O R
- =~ = =~ e = = = -~

=] L] ~ w wn o Pl o 0

(=) o o o o o o o -

- i — i - — (] -
sajhAqebig

‘fMoedeg abesoys

2004 2006 2008 2010 2012 2014

2002

Year

(b)

(Berger, Daniels, and Yu, 2016)




Curse of Dimensionality

D o <>

e Sequences are compared in high dimensional space
* Comparing N sequences takes N? time

* Computing edit distance between two sequences
of length n takes n? time

* Allegedly




Curse of Dimensionality

D o <>

* ATGATCGAGGCTATGCGACCGATCGATCGATTCGTA
* ATGATGGAGGCTATGGGAACGATCGATCGACTCGTA
* ATGATCGAGGCTATGCCACCGATCGAACGATTCGTA
* ATCATCGAGGCTATGCGACCGTTCGATCGATTCCTA
* GTGATCGTGGCTATGCGACCGATCGATCGATTCGTC
* ATGATCGAGGCTATGCCACCGATCGAACGATTCGTA
* ATGATCCAGGCTATGCGACCGATCGATGCATTCGTA




Why Stay in High Dimensions?

e 4100 hossible DNA strings of length 100

e 415 ~ 1 billion reads




k-mers of a Sequence

L

* All substrings of length k

* Canonical: lexicographically smallest among
forward and reverse complement

* Forget this for now All /-mers:
ATCTGAGGTCAC
ATCTGAG
Reverse complement: TCTGAGG
ATCTGAGGTCAC CTGAGGT
LYDOYOLOOVYOLD TGAGGTC
GAGGTCA
AGGTCAC



Hash function

D o <>

String > I\';:g;?(: Random integer in {1, m>

* Will assume idealized model of hashing for this talk

* Lots of research in this area




Bloom Filter Example Problem

D o <>

e Store a large set of N k-mers
e Query k-mers against it for exact matches

* Want speed and space-efficiency




Bloom Filter Example Problem

D o <>

e Store a large set of N k-mers
e Query k-mers against it for exact matches
* Want speed and space-efficiency

* How can we address this with hashing?




Bloom Filter Example Problem

D o <>

e Store a large set of N k-mers
e Query k-mers against it for exact matches
* Want speed and space-efficiency

* How can we address this with hashing?
e Put k-mers in hash table




Bloom Filter Example Problem

D o <>

e Store a large set of N k-mers
e Query k-mers against it for exact matches
* Want speed and space-efficiency

* How can we address this with hashing?

e Put k-mers in hash table
* At least 2Nk bits for data plus table overhead




Bloom Filter Example Problem

D o <>

e Store a large set of N k-mers
e Query k-mers against it for exact matches
* Want speed and space-efficiency

* How can we address this with hashing?

e Put k-mers in hash table
* At least 2Nk bits for data plus table overhead

 What if we just store one bit at each hash for
presence/absence?

e Simple Bloom filter, potentially suboptimal



Bloom Filter

D o <>

* Probabilistic data structure

* Fast and space-efficient

* False positives, but no false negatives
* Insert and contains, but no delete

* Due to Burton Howard Bloom in 1970
* Gave example of automatic hyphenation

 |dentify the 10% of words that require special
hyphenation rules



Bloom Filter

D o <>

* N items to store: x{, X5, ..., Xy
* m-bit vector

* d hash functions: h{, h,, ..., h,
* Insert(x): set bits h{(x), h,(x), ..., hg(x) to 1

* Contains(y):

* Yes if bits h1(y), ho(y), ..., hg(y) are 1
* NoifanyareO




Bloom Filter Example

D o <>

*m = 10, d = 3, hash functions: hy, h,, h;




Bloom Filter Example

D o <>

*m = 10, d = 3, hash functions: hy, h,, h;
Insert(xq):hq (x1), hp(x1), h3(x1)




Bloom Filter Example

D o <>

*m = 10, d = 3, hash functions: hy, h,, h;
Insert(xq):hq(x1), ha(x1), h3(x1)  Insert(xz):hq (x2), ha(x2), ha(x2)




Bloom Filter Example

D o <>

*m = 10, d = 3, hash functions: hy, h,, h;
Insert(xq):hq(x1), ha(x1), h3(x1)  Insert(xz):hq (x2), ha(x2), ha(x2)

p—

Contains(x,):h1(x5), hy(x5), h3(x5)




Bloom Filter Example

D o <>

*m = 10, d = 3, hash functions: hy, h,, h;
Insert(xq):hq(x1), ha(x1), h3(x1)  Insert(xz):hq (x2), ha(x2), ha(x2)

Contains(x,):h1(x5), hy(x5), h3(x5)

Contains(y):hy (), h, (), h3 ()




Bloom Filter Example

D o <>

*m = 10, d = 3, hash functions: hy, h,, h;
Insert(xq):hq(x1), ha(x1), h3(x1)  Insert(xz):hq (x2), ha(x2), ha(x2)

Contains(x,):h1(x5), hy(x5), h3(x5)

Contains(y):hy(y), ho(¥), h3(y)
False Positive!




False Positive probability

* Pr[one hash misses a bit]
1
¢ 1——
m

Pr[one insertion misses a bit]
- (1-2)
m
Pr[all insertions miss a bit]
. (1 B 1)dn
m
Pr[a single bit flipped to 1]
d
° 1_(1—i) nzl_e—dn/m

m

False positive probability (assuming independence)
. (1 _ e—dn/m)d



Optimal parameters

D o <>

d
* False positive rate p ~ (1 — e~9m/™m)

* False positives minimized at d = %an

* Bits per item D22 5 —1.44log,p

n In2
* Approximate: assuming asymptotic, independence, and

integrality of d
* p = 0.01, needs 9.59 bits per item
* p = 0.001, needs 14.38 bits per item

* Number of hashes d = —log,p



Properties

D o <>

* Insert and check in O(d) time
* Independent of number of items inserted

e Fast and parallel to compute hashes

e Can do union and intersection with OR and AND of
bit vectors

e Can estimate N if unknown




Endless Variations

D o <>

* Deletions
* Counting
* Bloomier filters: storing values

* Cache optimizations

e Distance sensitive: is x close to the set




k-mer Bloom Filter

D o <>

e Can we do better if we know the items are k-mers
from a genome?




k-mer Bloom Filter

D o <>

e Can we do better if we know the items are k-mers
from a genome?

* Observation: the “items” are overlapping substrings
from a 4 letter alphabet




k-mer Bloom Filter

D o <>

e Can we do better if we know the items are k-mers
from a genome?

* Observation: the “items” are overlapping substrings
from a 4 letter alphabet

» After getting positive,
* Check all 4 preceding k-mers and all 4 following k-mers
 One must be in the set for a true positive
* False positive next to another positive less likely ATCC

* Can reduce false positives or space < ATC
* (Pellow, Filippova, and Kingsford, 2017) TCCx



Bio Applications

D o <>

* Pan-genome storage
e Bloom filter trie (Holley, Wittler, and Stoye, 2015)

* Short-read RNA-seq database
* Split Sequence Bloom tree (Solomon and Kingsford,
2016)
 Succinct de Bruijn graphs
* Probabilistic de Bruijn graph (Pell, et al., 2011)

* Exact version (Chikhi and Rizk, 2012)
 Human genome: 3 Gbp, k = 27, 3.7 GB, 13.2 bits per vertex



Locality Sensitive Hashing (LSH)

D o <>

* What do we typically want to avoid when hashing?




Locality Sensitive Hashing (LSH)

D o <>

* What do we typically want to avoid when hashing?
* Collisions!

* Approximate nearest neighbors: towards removing
the curse of dimensionality (Indyk and Motwani,
1998)

* |dea: get similar elements to hash together

* “Its key ingredient is the notion of locality-sensitive
hashing which may be of independent interest;...”




Comparing Two Sequences

D o <>

* Mash: fast genome and metagenome distance
estimation using MinHash (Ondov et al., 2016)

* Let A and B be two DNA sequences to compare

e Construct k-mer sets A and B
* Assume |A| = |B| for now (not true)

 Compare the sets somehow

* Not faster yet, but we’ll get there...




Jaccard Index

D o <>

e Similarity between sets A and B
_ lAnB|
|AUB]

* Correlated with Average Nucleotide Identity (ANI)
* Empirical support, but debatable




Jaccard Index: u=




Jaccard Index: uos

|AUB|

g >

* What would you do if you were studying a
population?

People who like People who
peanut butter like jelly




Jaccard Index: uos

|AUB|

D o <>

* What would you do if you were studying a
population? Sample!

People who
like jelly

People who like
peanut butter




Sketch

* Small “fingerprint” of a data point (string)




Warm-up: Naive Sketch

D o <>

e Sample each string independently (don’t want to
do N? sketches for comparing all pairs of N strings)




Warm-up: Naive Sketch

D o <>

e Sample each string independently (don’t want to
do N? sketches for comparing all pairs of N strings)




Warm-up: Naive Sketch

D o <>

e Sample each string independently (don’t want to
do N? sketches for comparing all pairs of N strings)

* Small overlap




Minhashing/Bottom-d Sketch

* On the resemblance and containment of
documents (Broder, 1997)

* For comparing documents

* Hash each k-mer in a sequence
* Sketch S(A): smallest d hash values in 4

e Or take min for each of d different hash function
* Use same hash function for S(4) and S(B)

* Lets us sketch each string, but “simulate” sketching
the union S(A U B)

e Canonical k-mers, A and B could be reverse comps



Minhashing/Bottom-d Sketch

e Sample smallest d = 6 hashes of k-mers in each
set




Minhashing/Bottom-d Sketch

e Sample smallest d = 6 hashes of k-mers in each
set




Minhashing/Bottom-d Sketch

e Sample smallest d = 6 hashes of k-mers in each

set This can’t happen




Comparing sketches

< >

* Jaccard estimate j
. |ANB]| ~ |S(AUB)NS(A)NS(B)|
|AUB| |S(AUB) |
* Get S(4 U B) by merge sort operation in 0(d) time
* Merge until d unique hashes seen
e Count number of matchesc = 3 /S(A) S(AU B) S(»

. c 2 1 1
] =7 3 2 2
] ] 1 4 3 4
* Error of estimate is € = NG 7 4 5
9 5 7
\10 7 8/




Building Bottom-d Sketch

* Takes O(n log d) time
* Traverse string, hashing k-mers
» Keep sorted list of smallest d
* Check each new hash against max in list
* O(log d) time to insert if necessary

* Actually expected time O(n + d log d logn)

* Because Pr[ith hash gets inserted in list] = %

* So effectively linear




Minhash parameters

D o <>

* Probability some k-mer x appears in a random
genome of length n
 Prix € Al ~ 1 — (1 — |2]7%)"
* Alphabet size |X| = 4
e Fork = 16, n = 3Gbp:
* Probability of a given 16-mer in a genome is = 0.5

* =~ 25% of 16-mers expected to be shared between two
random 3 Gbp genomes

e Too short k-mers can overestimate Jaccard, especially
for distant genomes

* Very long could underestimate, but less of an issue



Minhash parameters

L

* Value of k to achieve a desired probability g of
seeing a given k-mer in sequence length n

.k~ [logm (n(l—CI))}

q
* 5 Mbp genome, g = 0.01, k = 14

* 3 Gbp genome, g = 0.01, k = 19

e Mash default: k=21 and s = 1000
» 8 kB per sketch




Mash distance

D o <>

* Mash distance based on Jaccard estimate j
e —1n2L

kKo 1+j
 Based on Poisson error model

* Implicitly uses average size of the two sets,
penalizing sets of different size




Some related works

D o <>

* Assembly overlaps

* Assembling large genomes with single-molecule
sequencing and locality-sensitive hashing (Berlin et al.,
2015)

 Containment for different size sets

* Improving Min Hash Via the Containment Index with
Applications to Metagenomic Analysis (Koslicki and
Zabeti, 2017)




Implementation

D o <>

e MurmurHash3

* Open Bloom Filter Library
* Mash




Other Random Stuff




Other Random Stuff




Other Random Stuff




Fruit Fly Brains

D o <>

* Locality Sensitive Hashing (LSH)

* A neural algorithm for a fundamental computing
problem (Dasgupta, Stevens, and Navlakha, 2017)

* Bloom filters
* (Dasgupta, Sheehan, Stevens, and Navlakha, upcoming)

* Have 3 special properties
e Continuous-valued novelty
* Distance sensitivity

* Time sensitivity




Thanks!




