Bloom Filters, Minhashes, and Other Random Stuff

Brian Brubach

University of Maryland, College Park

StringBio 2018, University of Central Florida

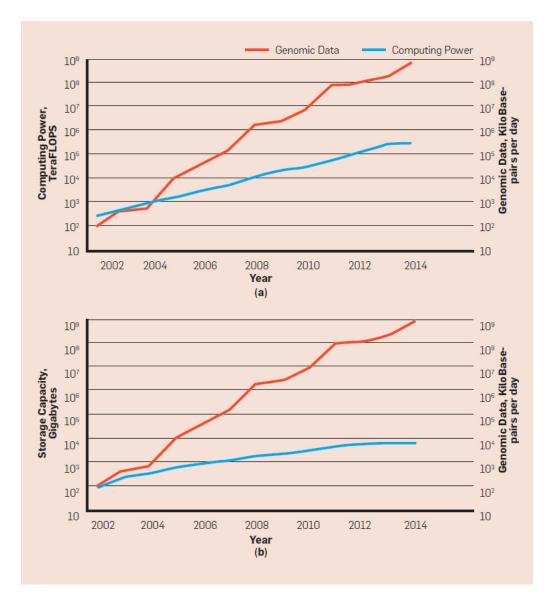
CENTER FOR BIOINFORMATICS & COMPUTATIONAL BIOLOGY

What?

- Probabilistic
- Space-efficient
- Fast
- Not exact

Why?

- Data deluge/Big data/Massive data
- Millions or billions of sequences
- Human genome: 3 Gbp
 - 1 giga base pairs = 1 billion characters
- Microbiome sample of 1.6 billion 100 bp reads generated in 10.8 days (Caporaso, et al., 2012)
- Medium data, but on a laptop
 - Lots of bioinformatics happens here
- Beyond scalability of BWT, FM-index, etc.



(Berger, Daniels, and Yu, 2016)

Curse of Dimensionality

- Sequences are compared in high dimensional space
- Comparing N sequences takes N^2 time
- Computing edit distance between two sequences of length n takes n^2 time
 - Allegedly

Curse of Dimensionality

- ATGATCGAGGCTATGCGACCGATCGATCGATTCGTA
- ATGATGGAGGCTATGGGAACGATCGATCGACTCGTA
- ATGATCGAGGCTATGCCACCGATCGAACGATTCGTA
- ATCATCGAGGCTATGCGACCGTTCGATCGATTCCTA
- GTGATCGTGGCTATGCGACCGATCGATCGATTCGTC
- ATGATCGAGGCTATGCCACCGATCGAACGATTCGTA
- ATGATCCAGGCTATGCGACCGATCGATGCATTCGTA

Why Stay in High Dimensions?

- 4¹⁰⁰ possible DNA strings of length 100
- $4^{15} \approx 1$ billion reads

k-mers of a Sequence

- All substrings of length k
- Canonical: lexicographically smallest among forward and reverse complement
 - Forget this for now

Reverse complement: ATCTGAGGTCAC LV9VJLJJV9L9 All 7-mers: ATCTGAGGTCAC ATCTGAG TCTGAGG CTGAGGT TGAGGTC GAGGTCA AGGTCAC

Hash function

- Will assume idealized model of hashing for this talk
- Lots of research in this area

- Store a large set of N k-mers
- Query k-mers against it for exact matches
- Want speed and space-efficiency

- Store a large set of N k-mers
- Query *k*-mers against it for exact matches
- Want speed and space-efficiency
- How can we address this with hashing?

- Store a large set of N k-mers
- Query *k*-mers against it for exact matches
- Want speed and space-efficiency
- How can we address this with hashing?
 - Put k-mers in hash table

- Store a large set of N k-mers
- Query *k*-mers against it for exact matches
- Want speed and space-efficiency
- How can we address this with hashing?
 - Put k-mers in hash table
 - At least 2Nk bits for data plus table overhead

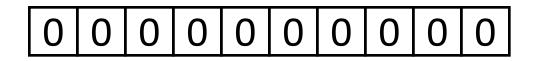
- Store a large set of N k-mers
- Query *k*-mers against it for exact matches
- Want speed and space-efficiency
- How can we address this with hashing?
 - Put k-mers in hash table
 - At least 2Nk bits for data plus table overhead
- What if we just store one bit at each hash for presence/absence?
 - Simple Bloom filter, potentially suboptimal

Bloom Filter

- Probabilistic data structure
- Fast and space-efficient
- False positives, but no false negatives
- Insert and contains, but no delete
- Due to Burton Howard Bloom in 1970
 - Gave example of automatic hyphenation
 - Identify the 10% of words that require special hyphenation rules

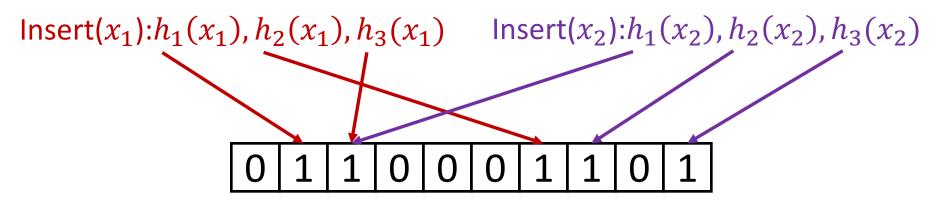
Bloom Filter

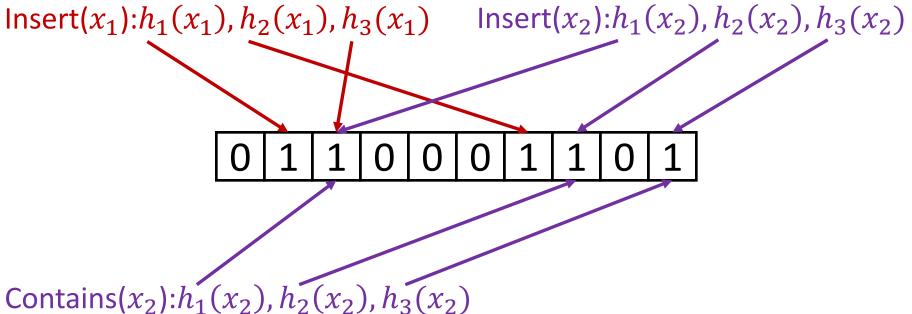
- *N* items to store: x_1, x_2, \ldots, x_N
- *m*-bit vector
- d hash functions: h_1, h_2, \dots, h_d
- Insert(x): set bits $h_1(x)$, $h_2(x)$, ..., $h_d(x)$ to 1
- Contains(y):
 - Yes if bits $h_1(y)$, $h_2(y)$, ..., $h_d(y)$ are 1
 - No if any are 0

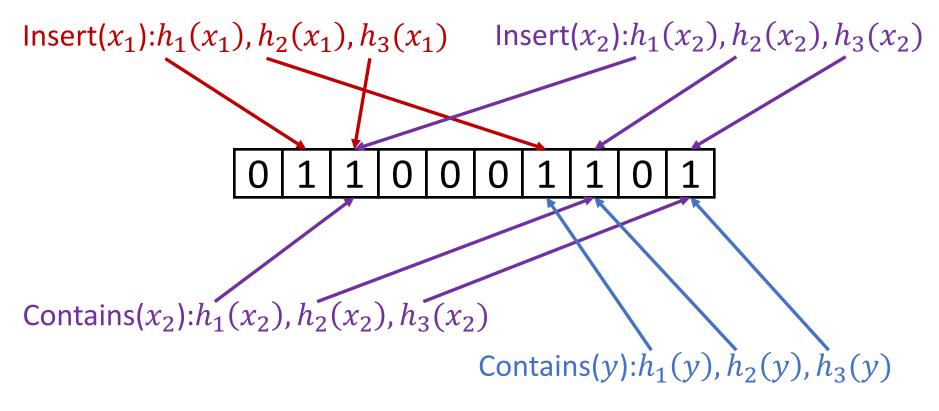


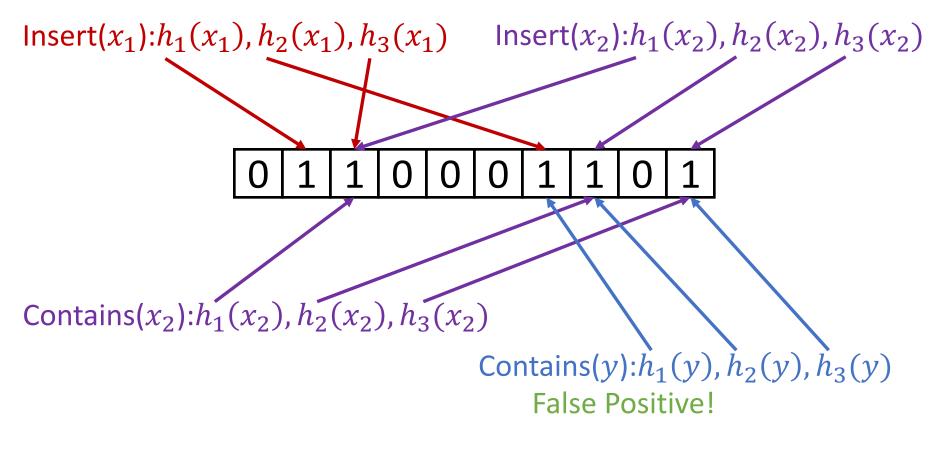
• m = 10, d = 3, hash functions: h_1, h_2, h_3

Insert(x_1): $h_1(x_1), h_2(x_1), h_3(x_1)$ 0 1 1 0 0 1 0 0 0









False Positive probability

• Pr[one hash misses a bit]

•
$$1-\frac{1}{m}$$

Pr[one insertion misses a bit]

•
$$\left(1-\frac{1}{m}\right)^d$$

• Pr[all insertions miss a bit]

•
$$\left(1-\frac{1}{m}\right)^{dn}$$

• Pr[a single bit flipped to 1]

•
$$1 - \left(1 - \frac{1}{m}\right)^{dn} \approx 1 - e^{-dn/m}$$

• False positive probability (assuming independence)

•
$$\left(1-e^{-dn/m}\right)^d$$

Optimal parameters

- False positive rate $p \approx (1 e^{-dn/m})^d$
- False positives minimized at $d = \frac{m}{n} \ln 2$
- Bits per item $\frac{m}{n} \approx -\frac{\log_2 p}{\ln 2} \approx -1.44 \log_2 p$
 - Approximate: assuming asymptotic, independence, and integrality of *d*
 - p = 0.01, needs 9.59 bits per item
 - p = 0.001, needs 14.38 bits per item
- Number of hashes $d \approx -\log_2 p$

Properties

- Insert and check in O(d) time
 - Independent of number of items inserted
- Fast and parallel to compute hashes
- Can do union and intersection with OR and AND of bit vectors
- Can estimate N if unknown

Endless Variations

- Deletions
- Counting
- Bloomier filters: storing values
- Cache optimizations
- Distance sensitive: is x close to the set

k-mer Bloom Filter

• Can we do better if we know the items are k-mers from a genome?

k-mer Bloom Filter

- Can we do better if we know the items are k-mers from a genome?
- Observation: the "items" are overlapping substrings from a 4 letter alphabet

k-mer Bloom Filter

- Can we do better if we know the items are k-mers from a genome?
- Observation: the "items" are overlapping substrings from a 4 letter alphabet
- After getting positive,
 - Check all 4 preceding k-mers and all 4 following k-mers

ATCC

TCCx

XATC

- One must be in the set for a true positive
- False positive next to another positive less likely
- Can reduce false positives or space
- (Pellow, Filippova, and Kingsford, 2017)

Bio Applications

- Pan-genome storage
 - Bloom filter trie (Holley, Wittler, and Stoye, 2015)
- Short-read RNA-seq database
 - Split Sequence Bloom tree (Solomon and Kingsford, 2016)
- Succinct de Bruijn graphs
 - Probabilistic de Bruijn graph (Pell, et al., 2011)
 - Exact version (Chikhi and Rizk, 2012)
 - Human genome: 3 Gbp, k = 27, 3.7 GB, 13.2 bits per vertex

Locality Sensitive Hashing (LSH)

• What do we typically want to avoid when hashing?

Locality Sensitive Hashing (LSH)

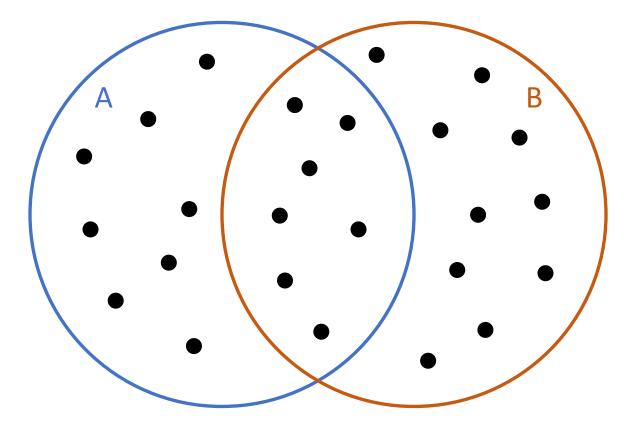
- What do we typically want to avoid when hashing?
 - Collisions!
- Approximate nearest neighbors: towards removing the curse of dimensionality (Indyk and Motwani, 1998)
 - Idea: get similar elements to hash together
 - "Its key ingredient is the notion of *locality-sensitive hashing* which may be of independent interest;..."

Comparing Two Sequences

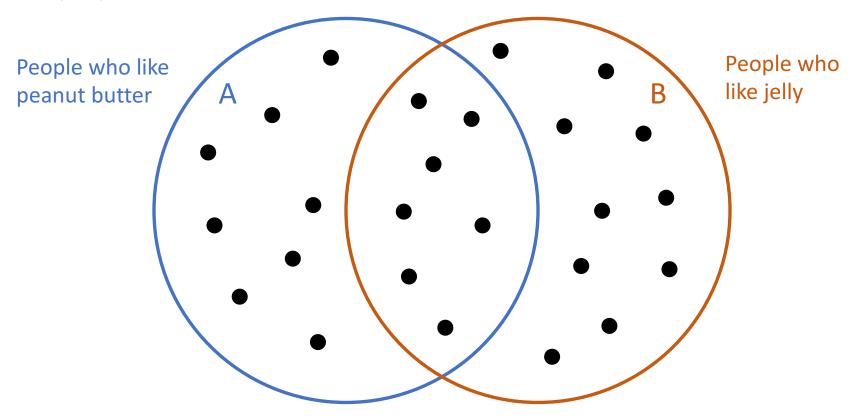
- Mash: fast genome and metagenome distance estimation using MinHash (Ondov et al., 2016)
- Let A and B be two DNA sequences to compare
- Construct k-mer sets A and B
 - Assume |A| = |B| for now (not true)
- Compare the sets somehow
- Not faster yet, but we'll get there...

Jaccard Index

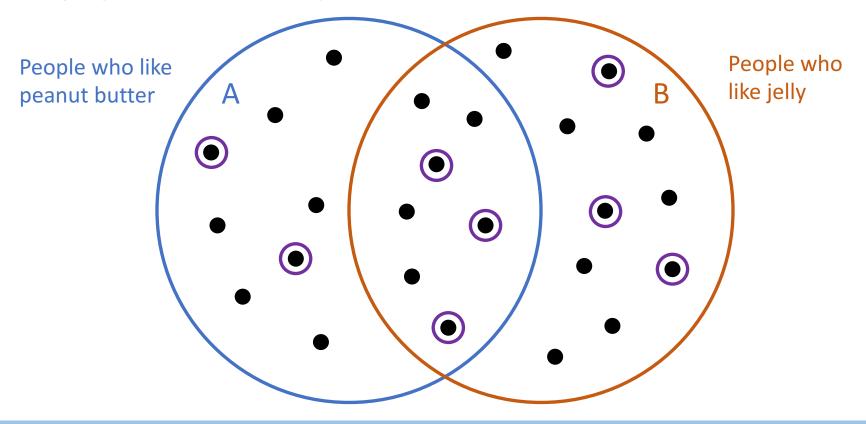
- Similarity between sets A and B
 - $\frac{|A \cap B|}{|A \cup B|}$
- Correlated with Average Nucleotide Identity (ANI)
 - Empirical support, but debatable



• What would you do if you were studying a population?

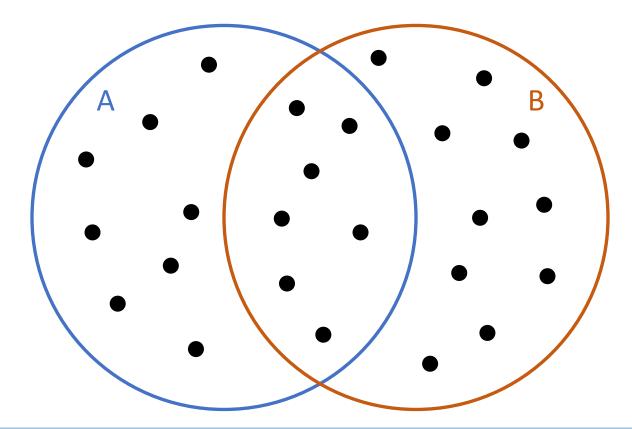


• What would you do if you were studying a population? Sample!



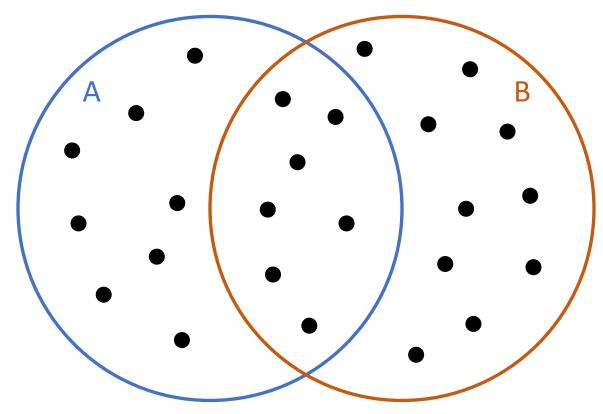
Sketch

• Small "fingerprint" of a data point (string)



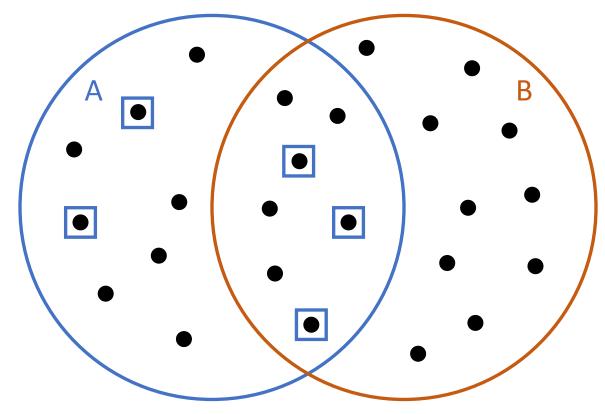
Warm-up: Naïve Sketch

• Sample each string independently (don't want to do N^2 sketches for comparing all pairs of N strings)



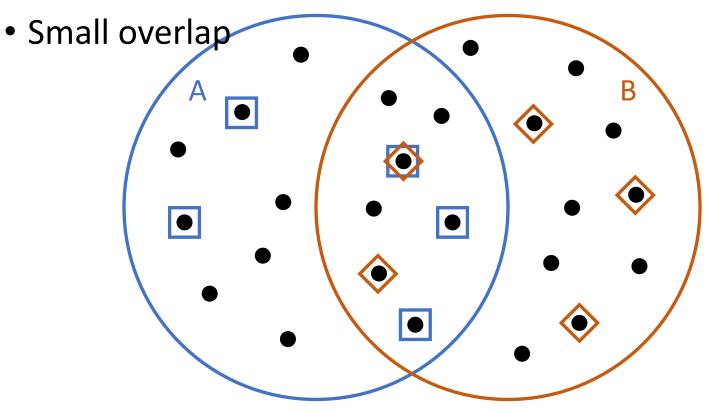
Warm-up: Naïve Sketch

• Sample each string independently (don't want to do N^2 sketches for comparing all pairs of N strings)



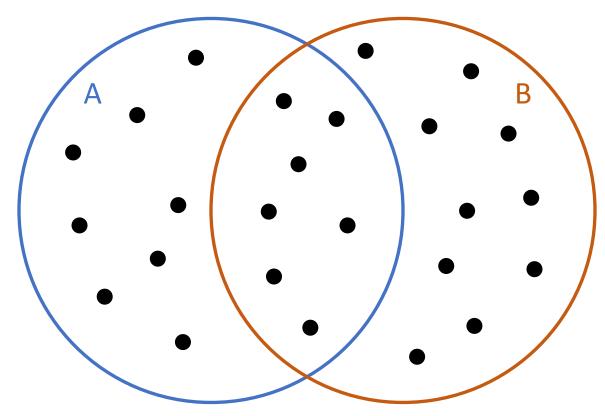
Warm-up: Naïve Sketch

 Sample each string independently (don't want to do N² sketches for comparing all pairs of N strings)

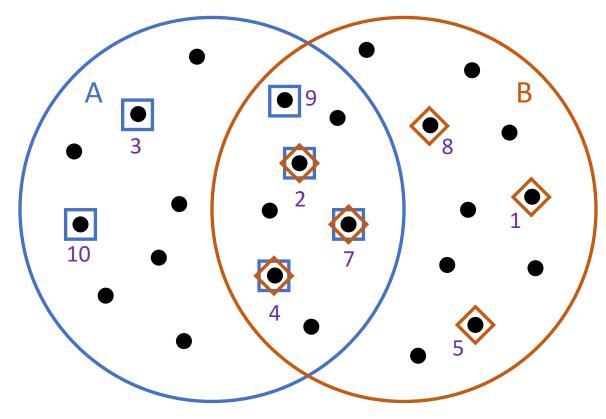


- On the resemblance and containment of documents (Broder, 1997)
 - For comparing documents
- Hash each *k*-mer in a sequence
- Sketch S(A): smallest d hash values in A
 - Or take min for each of d different hash function
- Use same hash function for S(A) and S(B)
- Lets us sketch each string, but "simulate" sketching the union S(A ∪ B)
- Canonical k-mers, A and B could be reverse comps

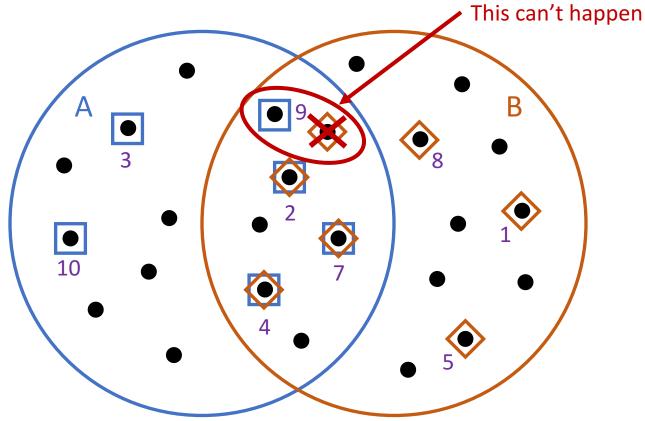
 Sample smallest d = 6 hashes of k-mers in each set



 Sample smallest d = 6 hashes of k-mers in each set

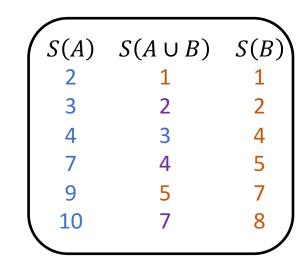


• Sample smallest d = 6 hashes of k-mers in each set



Comparing sketches

- Jaccard estimate *j*
 - $\frac{|A \cap B|}{|A \cup B|} \approx \frac{|S(A \cup B) \cap S(A) \cap S(B)|}{|S(A \cup B)|}$
- Get $S(A \cup B)$ by merge sort operation in O(d) time
 - Merge until d unique hashes seen
 - Count number of matches c = 3
 - $j = \frac{c}{a}$
- Error of estimate is $\epsilon = \frac{1}{\sqrt{d}}$



Building Bottom-*d* Sketch

- Takes $O(n \log d)$ time
 - Traverse string, hashing k-mers
 - Keep sorted list of smallest d
 - Check each new hash against max in list
 - $O(\log d)$ time to insert if necessary
- Actually expected time $O(n + d \log d \log n)$
 - Because $\Pr[i$ th hash gets inserted in list] = $\frac{d}{i}$
 - So effectively linear

Minhash parameters

- Probability some k-mer x appears in a random genome of length n
 - $\Pr[x \in A] \approx 1 (1 |\Sigma|^{-k})^n$
 - Alphabet size $|\Sigma| = 4$
- For k = 16, n = 3Gbp:
 - Probability of a given 16-mer in a genome is ≈ 0.5
 - ≈ 25% of 16-mers expected to be shared between two random 3 Gbp genomes
 - Too short k-mers can overestimate Jaccard, especially for distant genomes
 - Very long could underestimate, but less of an issue

Minhash parameters

- Value of k to achieve a desired probability q of seeing a given k-mer in sequence length n • $k \approx \left[\log_{|\Sigma|} \left(\frac{n(1-q)}{q} \right) \right]$
- 5 Mbp genome, q = 0.01, $k \approx 14$
- 3 Gbp genome, $q = 0.01, k \approx 19$
- Mash default: k = 21 and s = 1000
 - 8 kB per sketch

Mash distance

• Mash distance based on Jaccard estimate *j*

•
$$-\frac{1}{k}\ln\frac{2j}{1+j}$$

- Based on Poisson error model
- Implicitly uses average size of the two sets, penalizing sets of different size

Some related works

- Assembly overlaps
 - Assembling large genomes with single-molecule sequencing and locality-sensitive hashing (Berlin et al., 2015)
- Containment for different size sets
 - Improving Min Hash Via the Containment Index with Applications to Metagenomic Analysis (Koslicki and Zabeti, 2017)

Implementation

- MurmurHash3
- Open Bloom Filter Library
- Mash

Other Random Stuff

Other Random Stuff

Other Random Stuff

Fruit Fly Brains

- Locality Sensitive Hashing (LSH)
 - A neural algorithm for a fundamental computing problem (Dasgupta, Stevens, and Navlakha, 2017)
- Bloom filters
 - (Dasgupta, Sheehan, Stevens, and Navlakha, upcoming)
 - Have 3 special properties
 - Continuous-valued novelty
 - Distance sensitivity
 - Time sensitivity

Thanks!