
Bidirectional Burrows-Wheeler Transform and
(Approximate) Pattern Matching

StringBio 2018
University of Central Florida, USA

Arnab Ganguly
Department of Computer Science, UW - Whitewater

October 25, 2018

October 25, 2018

Pattern Matching

The Problem
Input: A text T[1, n] and a pattern P[1, p]
Output: All positions in T where P appears as a substring

Text Indexing – Suffix Tree and Suffix Array
Pre-process the text and create a data structure

Answer queries using the data structure efficiently – avoid reading the text every time

Suffix Trees and Suffix Arrays are the ubiquitous data structures for this purpose

We can report all occurrences in time O(p + occ) after a one-time O(n)-time pre-processing

occ = # of occurrences of P in T

October 25, 2018

Suffix Tree and Suffix Array

Pattern P appears at position i iff P is a prefix of the suffix T[i, n]

$ a na

1
na$ $ na$

na$

banana$

2

3 4

5

6 7u

$

T = banana$

One leaf per suffix: number of suffixes = n = length of T

Leaves are arranged in lexicographic order of the corresponding suffixes

Number of nodes < 2n

October 25, 2018

Suffix Tree and Suffix Array

Searching with P = ana

$ a na

1
na$ $ na$

na$

banana$

2

3 4

5

6 7u

$

T = banana$

i 1 2 3 4 5 6 7
SA[i] 7 6 4 2 1 5 3

October 25, 2018

Suffix Tree and Suffix Array

Searching with P = ana

$ a na

1
na$ $ na$

na$

banana$

2

3 4

5

6 7u

$

T = banana$

i 1 2 3 4 5 6 7
SA[i] 7 6 4 2 1 5 3

October 25, 2018

Compressed Text Indexing

The Huge Space Problem
The space occupied by suffix tree is Θ(n log n) bits

T occupies ndlog σe bits, where σ is the alphabet size

Too large for most practical purposes, such as for Human Genome (σ = 4 and n ≈ 3 billion)
The Human Genome occupies space ≈ 1GB

Suffix tree occupies space ≈ 40GB

Answer
Compressed Suffix Array [Grossi and Vitter, STOC’ 00]

FM Index [Ferragina and Manzini, FOCS’ 00]

Space: n log σ + o(n) bits – close to the text
Time: O((p + occ) poly(log n)) – close to the suffix tree

October 25, 2018

Suffix Links – Key Concept behind Succinct Indexing

$ a na

1
na$ $ na$

na$

banana$

2

3 4

5

6 7u

$

T = banana$

Rank-preserving property
Consider the two suffixes under u.

Chop off the first character a.

The suffixes preserve their relative rank: [3, 4]→ [6, 7]

October 25, 2018

Reverse Suffix Links

$ a na

1
na$ $ na$

na$

banana$

2

3 4

5

6 7u

$

T = banana$

Rank-preserving property
Consider any two suffixes with ranks i and j, and previous characters BWT[i] and BWT[j]

Let the rank of the suffixes obtained by prepending the previous characters be i′ and j′.

Then, i′ < j′ iff BWT[i] < BWT[j] or BWT[i] = BWT[j] and i < j.

October 25, 2018

LF Mapping → Suffix Array

Definition
LF(i) is the lexicographic rank of the suffix starting at SA[i]− 1

Sampled Suffix Array
Explicitly store 〈i,SA[i]〉 iff SA[i] ∈ {1, 1 + dlog ne, 1 + 2dlog ne, . . . , n}.
The space needed is O(n) bits

Computing SA[i]
If i ∈ D, retrieve SA[i]

Otherwise, let i1 = LF(i), i2 = LF(i1), . . . , ik = LF(ik−1), where ik ∈ D

Then, SA[ik] = SA[i]− k =⇒ SA[i] = SA[ik] + k

Since k ≤ dlog ne, time needed is O(tLF · log n)

October 25, 2018

BWT → LF Mapping

$ a na

1
na$ $ na$

na$

banana$

2

3 4

5

6 7u

$

T = banana$

BWT[i] =
1 2 3 4 5 6 7
a n n b $ a a

LF(i) = num of j with BWT[j] ≺ BWT[i] + num of j with BWT[j] = BWT[i] and j ≤ i

= count(1, n, < BWT[i]) + count(1, i,= BWT[i])

For e.g., LF(3) = 5 + 2 = 7 and LF(6) = 1 + 2 = 3

October 25, 2018

BWT → Suffix Range (Backward Search)

Main Idea

$ a na

1
na$ $ na$

na$

banana$

2

3 4

5

6 7u

$

T = banana$

BWT[i] =
1 2 3 4 5 6 7
a n n b $ a a

If the suffix range of P is [L,R], then

the size of the suffix range of xP is the number of i ∈ [L,R] such that BWT[i] = x.

the suffix range of xP STARTS at 1 + count(1, n, < P[i]) + count(1, L− 1,= P[i])

the suffix range of xP ENDS at 1 + count(1, n, < P[i]) + count(1,R,= P[i])

October 25, 2018

Approximate Pattern Matching

The Problem
Input: A text T[1, n] and a pattern P[1, p]
Output: All positions in T where P appears as a substring with at most k mismatches (i.e.,
Hamming distance ≤ k)

The Obvious Approach
Try every position i in T and check whether the number of mismatches at this position is
at most k. If yes, then report i, else do not report i.

Complexity is O(pn), which is too high for most practical purposes.

Landau and Vishkin [Journal of Algorithms’ 89] gives an O(nk) time algorithm

k-errata Suffix Tree
Cole, Gottlieb, and Lewenstein [STOC’ 04] presents an O(n logk n)-space data structure with a
query time of O(p + logk n + occ) query time, assuming k = Θ(1).

What about BWT based approaches?

October 25, 2018

The Overall Idea for 1-mismatch

Split the pattern P[1, p] into two equal parts P[1, p/2] and P[p/2 + 1]

Mismatch can be either in first part or second part

To find mismatch in first part, do the following:
Backward search the second part to find suffix range of P[p/2 + 1, p]

Now, for i = p/2, p/2− 1, . . . , 1
find the suffix range of P[i] ◦ P[i + 1, p]
find the suffix range of P[1, i− 1] ◦ x ◦ P[i + 1, p] for every x ∈ Σ \ P[i]
and report occurrences from the non-empty suffix ranges.

To find mismatch in second part, do the following:
Forward search the first part to find suffix range of P[1, p/2]

Now, for i = p/2 + 1, p/2 + 2, . . . , p
find the suffix range of P[1, i− 1] ◦ P[i]
find the suffix range of P[1, i− 1] ◦ x ◦ P[i + 1, p] for every x ∈ Σ \ P[i]
and report occurrences from the non-empty suffix ranges.

October 25, 2018

The Bidirectional BWT [Lam et al., BIBM’ 09]

Maintain two separate BWTs – BWT for T and BWTr for Tr

Store the sampled suffix array for T

Given the suffix range of P and some x ∈ Σ, our task is the following:

compute the suffix range of xP – backward search using BWT – EASY!

compute the suffix range of Px

Computing the suffix range of Px – Main Idea
Let suffix range of P be [L,R]. Note that the suffix range of Px is a sub range of [L,R]

Let α be the number of suffixes that are prefixed by Pw, where w ∈ Σ is
lexicographically smaller than x

Let β be the number of suffixes that are prefixed by Px

Then, the suffix range of Px is [L + α, L + α+ β − 1]

How to compute α and β?

October 25, 2018

The Bidirectional BWT [Lam et al., BIBM’ 09]

Maintain two separate BWTs – BWT for T and BWTr for Tr

Store the sampled suffix array for T

Given the suffix range of P and some x ∈ Σ, our task is the following:

compute the suffix range of xP – backward search using BWT – EASY!

compute the suffix range of Px

Computing the suffix range of Px – Main Idea
Let suffix range of P be [L,R]. Note that the suffix range of Px is a sub range of [L,R]

Let α be the number of suffixes that are prefixed by Pw, where w ∈ Σ is
lexicographically smaller than x

Let β be the number of suffixes that are prefixed by Px

Then, the suffix range of Px is [L + α, L + α+ β − 1]

How to compute α and β?

October 25, 2018

The Bidirectional BWT [Lam et al., BIBM’ 09]

Maintain two separate BWTs – BWT for T and BWTr for Tr

Store the sampled suffix array for T

Given the suffix range of P and some x ∈ Σ, our task is the following:

compute the suffix range of xP – backward search using BWT – EASY!

compute the suffix range of Px

Computing the suffix range of Px – Main Idea
Let suffix range of P be [L,R]. Note that the suffix range of Px is a sub range of [L,R]

Let α be the number of suffixes that are prefixed by Pw, where w ∈ Σ is
lexicographically smaller than x

Let β be the number of suffixes that are prefixed by Px

Then, the suffix range of Px is [L + α, L + α+ β − 1]

How to compute α and β?

October 25, 2018

Computing α and β

Note that the suffix range of any string Y w.r.t T has the same size as that of Yr w.r.t Tr

Therefore, given the suffix range [L,R] of Pr w.r.t Tr

To compute α
Compute the total size of the suffix ranges of (Pw)r using a backward search via BWTr for

every w lexicographically smaller than x

countr(L,R, < x)

To compute β
Compute the size of the suffix range of (Px)r using a backward search via BWTr

countr(L,R,= x)

October 25, 2018

Closing Remarks

For 2-mismatches, split pattern into roughly 3 equal parts.

Consider 6 cases – 101, 011, 110, 200, 020, 002.

Works for higher number of mismatches.

Can be made to work for edit-distance with slight modifications.

Can be used to interleave backward and forward searches.

Thank you! Questions?

October 25, 2018

	Pattern Matching
	Suffix Tree
	Suffix Links
	Rank-preserving property
	LF Mapping Suffix Array

	Approximate Pattern Matching
	The Bidirectional BWT

