Bidirectional Burrows-Wheeler Transform and

(Approximate) Pattern Matching

StringBio 2018
University of Central Florida, USA

Arnab Ganguly
Department of Computer Science, UW - Whitewater

October 25, 2018

October 25, 2018

Pattern Matching

The Problem

Input: A text 71, n] and a pattern P[1, p]
Output: All positions in 7 where P appears as a substring

Text Indexing — Suffix Tree and Suffix Array

@ Pre-process the text and create a data structure
@ Answer queries using the data structure efficiently — avoid reading the text every time

@ Suffix Trees and Suffix Arrays are the ubiquitous data structures for this purpose

We can report all occurrences in time O(p + occ) after a one-time O(n)-time pre-processing

occ = # of occurrences of Pin T

October 25, 2018

Suffix Tree and Suffix Array

Pattern P appears at position iff P is a prefix of the suffix T'[i, n]

T = banana$

Leaves are arranged in lexicographic order of the corresponding suffixes
One leaf per suffix: number of suffixes = n = length of T’

Number of nodes < 2n

October 25, 2018

Suffix Tree and Suffix Array

Searching with P = ana

T = banana$

—_
()
w
~
)
=
<

October 25, 2018

Suffix Tree and Suffix Array

Searching with P = ana

T = banana$

October 25, 2018

Compressed Text Indexing

The Huge Space Problem

@ The space occupied by suffix tree is ©(n log n) bits

@ T occupies n[log o] bits, where o is the alphabet size
Too large for most practical purposes, such as for Human Genome (o = 4 and n =~ 3 billion)

The Human Genome occupies space ~ 1GB
Suffix tree occupies space ~ 40GB

Answer

@ Compressed Suffix Array [Grossi and Vitter, STOC’ 00]
@ FM Index [Ferragina and Manzini, FOCS’ 00]

Space: nlog o + o(n) bits — close to the text
Time: O((p + occ) poly(logn)) — close to the suffix tree

October 25, 2018

Suffix Links — Key Concept behind Succinct Indexing

T = banana$

Rank-preserving property

@ Consider the two suffixes under u.
@ Chop off the first character a.
@ The suffixes preserve their relative rank: [3,4] — [6,7]

October 25, 2018

Reverse Suffix Links

T = banana$

Rank-preserving property

@ Consider any two suffixes with ranks i and j, and previous characters BWT[i] and BWT]j]
@ Let the rank of the suffixes obtained by prepending the previous characters be i’ and j’.
@ Then, i’ < j" iff BWT[i] < BWT[j] or BWT[i] = BWT[j] and i < j.

October 25, 2018

LF Mapping — Suffix Array

LF (i) is the lexicographic rank of the suffix starting at SA[i] — 1

Sampled Suffix Array

@ Explicitly store (i, SA[i]) iff SA[i] € {1, 1+ [logn], 1+ 2[logn],...,n}.
@ The space needed is O(n) bits

Computing SA[i]

@ Ifi € D, retrieve SA[i]

@ Otherwise, let iy = LF(i), i» = LF(i1), ..., ix = LF(ix—1), where iy € D
@ Then, SA[ir] = SA[i] —k = SA[i] = SA[ix] +k

@ Since k < [logn], time needed is O (7. - log n)

October 25, 2018

BWT — LF Mapping

T = banana$

1|12 |3]4]5

Bt a|n|n|b|$]|a

LF(i) = num of j with BWT[j] < BWT([i] + num of j with BWT[;] = BWT[i] and j < i
= count(1,n, < BWT[i]) + count(1, i, = BWT][])

Fore.g.,LF(3) =5+2=7andLF(6) =1+2=3

October 25, 2018

BWT — Suffix Range (Backward Search)

Q

T = banana$

BWTIi] =

If the suffix range of P is [L, R], then
Q@ the size of the suffix range of xP is the number of i € [L, R] such that BWT[i] = x.
@ the suffix range of xP STARTS at 1 + count(1, n, < P[i]) + count(l,L — 1,= PJi])
@ the suffix range of xP ENDS at 1 + count(1, n, < P[i]) + count(1, R, = P[i])

October 25, 2018

Approximate Pattern Matching

The Problem

Input: A text 71, n] and a pattern P[1, p]
Output: All positions in 7 where P appears as a substring with at most £ mismatches (i.e.,
Hamming distance < k)

The Obvious Approach

@ Try every position i in 7 and check whether the number of mismatches at this position is
at most k. If yes, then report 7, else do not report i.

@ Complexity is O(pn), which is too high for most practical purposes.
@ Landau and Vishkin [Journal of Algorithms’ 89] gives an O(nk) time algorithm

k-errata Suffix Tree

Cole, Gottlieb, and Lewenstein [STOC’ 04] presents an O(n log® n)-space data structure with a
query time of O(p + logk n + occ) query time, assuming k = ©(1).

What about BWT based approaches?

October 25, 2018

The Overall Idea for 1-mismatch

@ Split the pattern P[1, p] into two equal parts P[1, p/2] and P[p/2 + 1]

@ Mismatch can be either in first part or second part

@ To find mismatch in first part, do the following:
@ Backward search the second part to find suffix range of P[p/2 + 1, p]
@ Now, fori=p/2,p/2—1,...,1
o find the suffix range of P[i] o P[i + 1, p]
o find the suffix range of P[1,i — 1] o x o P[i + 1, p] for every x € X \ PJi]
and report occurrences from the non-empty suffix ranges.

@ To find mismatch in second part, do the following:
@ Forward search the first part to find suffix range of P[1,p/2]
@ Now, fori=p/2+1,p/2+2,...,p
@ find the suffix range of P[1,i — 1] o P[f]

o find the suffix range of P[1,i — 1] o x o P[i + 1, p] for every x € ¥ \ PJi]
and report occurrences from the non-empty suffix ranges.

October 25, 2018

The Bidirectional BWT [Lam et al., BIBM’ 09]

@ Maintain two separate BWTs — BWT for 7 and BWT" for 7"
@ Store the sampled suffix array for T’

Given the suffix range of P and some x € X, our task is the following:
@ compute the suffix range of xP — backward search using BWT — EASY!

@ compute the suffix range of Px

October 25, 2018

The Bidirectional BWT [Lam et al., BIBM’ 09]

@ Maintain two separate BWTs — BWT for 7 and BWT" for 7"
@ Store the sampled suffix array for 7'

Given the suffix range of P and some x € X, our task is the following:
@ compute the suffix range of xP — backward search using BWT — EASY!

@ compute the suffix range of Px

Computing the suffix range of Px — Main Idea

@ Let suffix range of P be [L, R]. Note that the suffix range of Px is a sub range of [L, R]

@ Let a be the number of suffixes that are prefixed by Pw, where w € X is
lexicographically smaller than x

@ Let 5 be the number of suffixes that are prefixed by Px
@ Then, the suffix range of Pxis [L + o, L + o+ 8 — 1]

October 25, 2018

The Bidirectional BWT [Lam et al., BIBM’ 09]

@ Maintain two separate BWTs — BWT for 7 and BWT" for 7"
@ Store the sampled suffix array for 7'

Given the suffix range of P and some x € X, our task is the following:
@ compute the suffix range of xP — backward search using BWT — EASY!

@ compute the suffix range of Px

Computing the suffix range of Px — Main Idea

@ Let suffix range of P be [L, R]. Note that the suffix range of Px is a sub range of [L, R]

@ Let a be the number of suffixes that are prefixed by Pw, where w € X is
lexicographically smaller than x

@ Let 5 be the number of suffixes that are prefixed by Px
@ Then, the suffix range of Pxis [L + o, L + o+ 8 — 1]

How to compute « and 3?

October 25, 2018

Computing

@ Note that the suffix range of any string ¥ w.r.t 7 has the same size as that of Y” w.r.t 7"
@ Therefore, given the suffix range [L, R] of P" w.r.t T"

To compute «

Compute the total size of the suffix ranges of (Pw)" using a backward search via BWT" for
every w lexicographically smaller than x

count”(L, R, < x)

To compute 3

Compute the size of the suffix range of (Px)" using a backward search via BWT"

count”(L,R, = x)

October 25, 2018

Closing Remarks

For 2-mismatches, split pattern into roughly 3 equal parts.
Consider 6 cases — 101,011, 110, 200, 020, 002.
Works for higher number of mismatches.

Can be made to work for edit-distance with slight modifications.

Can be used to interleave backward and forward searches.

Thank you! Questions?

October 25, 2018

	Pattern Matching
	Suffix Tree
	Suffix Links
	Rank-preserving property
	LF Mapping Suffix Array

	Approximate Pattern Matching
	The Bidirectional BWT

