Genome Indexing and the Burrows-Wheeler

Transform

Alan Kuhnle

25 October 2018
StringBio 2018
Slides adapted from Ben Langmead, Travis Gagie

UF FroRm

Alan Kuhnle Genome Indexing and the Burrows-Wheeler Transform

Burrows-Wheeler Transform

Reversible permutation of the characters of a string, used originally for compression

Sabaaba
aSabaab
aabaS$Sab
abaaba$ abaSaba abba$aa
T 4 abaabas BWT(T)
C baSabaa
Ong baaba S a Last column
Sort Burrows-Wheeler
Matrix

How is it useful for compression? How is it reversible? How is it an index?

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform

def rotations(t):
" Return list of rotations of input string t """
tt =t * 2
return [tt[i:i+len(t)] for i in xrange(9, len(t))]

def bwm(t):

" Return lexicographically sorted list of t’s rotations """

return sorted(rotations(t))

def bwtViaBwm(t):
" Given T, returns BWT(T) by way of the BWM """
return ''.join(map(lambda x: x[-1], bwm(t)))

>>> bwtViaBwm("Tomorrow_and tomorrow_and tomorrow$")

'‘wdwwdd__ nnoooaattTmmmrrrrrrooo 000’

Make list of all rotations

Sort them

Take last column

>>> bwtViaBwm("It was the best of times it was the worst of times$")

's$esttssfftteww hhmmbootttt ii woeeaaressIi

>>> bwtViaBwm('in_the jingle jangle morning I11 come following you$')

'u_gleeeengj mlhl nnnnt$nwj 1ggIolo iiiiarfcmylo oo

Python example: http://nbviewer.ipython.org/6798379

http://nbviewer.ipython.org/6798379
http://nbviewer.ipython.org/6798379

Burrows-Wheeler Transform

final
char sorted rotations

(L)

o

to decompress. It achieves compression
to perform only comparisons to a depth

transformation} This section describes
transformation} We use the example and
treats the right-hand side as the most

tree for each 16 kbyte input block, enc
tree in the output stream, then encodes
turn, set $L[i]$ to be the

turn, set $R[1i]$ to the

unusual data. Like the algorithm of Man
use a single set of probabilities table
using the positions of the suffixes in

value at a given point in the vector $R
we present modifications that improve t
when the block size is quite large. Ho
which codes that have not been seen in

with ch appear in the {\em same order
with chs. In our exam
with Huffman or arithmetic coding. Bri
with figures given by Bell \cite{bell}.

Characters of the BWT are sorted
by their right-context

This lends additional structure to
BWT(T), tending to make it more
compressible

O O F-F- - @ ® F ® ® O F - ® O O O O
== = R = - - B - -2 - B B - - R = - = R= R B B =

Figure 1: Example of sorted rotations. Twenty consecutive rotations from the
sorted list of rotations of a version of this paper are shown, together with the final
character of each rotation.

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform

BWM bears a resemblance to the suffix array

Sabaaba 6($
aSabaab 5/a$
aabaSab 2laabas$
abaSaba 3labas$
abaabas$ Olabaaba$
baSabaa 41bas$
baaba$a l1lbaaba$
BWM(T) SA(T)

Sort order is the same whether rows are rotations or suffixes

Burrows-Wheeler Transform

In fact, this gives us a new definition / way to construct BWT(T):

T[SA[i] —1] if SA[i] > 0

BWTli] = { 3 if SA[i] = 0

"“BWT = characters just to the left of the suffixes in the suffix array”

Sabaaba 6|$
aSabaab 5/a$
aaba$Sab 2laaba$
abaSaba 3laba$
abaabas$ Olabaaba$
baSabaa 4ba$
baaba$a 1lbaaba$

BWM(T) SA(T)

Burrows-Wheeler Transform

def suffixArray(s):
" Given T return suffix array SA(T). We use Python's sorted
function here for simplicity, but we can do better. """
satups = sorted([(s[i:], 1) for i in xrange(9, len(s))])
Extract and return just the offsets
return map(lambda x: x[1], satups)

Make suffix array

def bwtViaSa(t):

" Given T, returns BWT(T) by way of the suffix array. """ Take characterSjUSt

bw = []
for si in suffixArray(t): to the left of the
if si == 0: bw.append('$")
else: bw.append(t[si-1]) sorted suffixes
return ''.join(bw) # return string-ized version of List bw

>>> bwtViaSa("Tomorrow and tomorrow_and tomorrow$")
'wdwwdd___nnoooaattTmmmrrrrrrooo 000

>>> bwtViaSa("It was the best of times it was the worst of times$")
's$esttssfftteww hhmmbootttt ii woeeaaressIi '

>>> bwtViaSa('in_the jingle jangle morning I1ll come following you$')

'u_gleeeengj mlhl nnnnt$nwj 1gglolo iiiiarfcmylo oo

Python example: http://nbviewer.ipython.org/6798379

http://nbviewer.ipython.org/6798379
http://nbviewer.ipython.org/6798379

Burrows-Wheeler Transform

How to reverse the BWT?

?
R Sabaaba
aSabaab
v aabas$ab
abaaba$ abaSaba abbasaa
T ” abaabas BWT(T)
%y, baSabaa
N b aa b a $ a Last column
Sort Burrows-Wheeler
Matrix

BWM has a key property called the LF Mapping...

Burrows-Wheeler Transform: T-ranking

Give each character in T a rank, equal to # times the character occurred
previously in T. Call this the T-ranking.

aoboaiaxbiaz $

Now let’s re-write the BWM including ranks...

Burrows-Wheeler Transform

F L
BWM with T-ranking: as
as
ai
a> ai
do
d>
do

Look at first and last columns, called Fand L

And look at just the s

as occur in the same orderin Fand L. As we look down columns, in both

cases we see: A3, d1,d2, Ao

Burrows-Wheeler Transform

F
BWM with T-ranking:

Same with bs: b1, bo

Burrows-Wheeler Transform

Reversible permutation of the characters of a string, used originally for compression

Sabaaba
aSabaab
aabaS$Sab
abaaba$ abaSaba abba$aa
T 4 abaabas BWT(T)
C baSabaa
Ong baaba S a Last column
Sort Burrows-Wheeler
Matrix

How is it useful for compression? How is it reversible? How is it an index?

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform: LF Mapping

F L

BWM with T-ranking: S ao bo a1 a> b1 as
as S ao bo ar a2 by
ai a2 by az $ ao bo
a: biaz $ ao bo a;
aoboaiazbiaz $
bias $ ap by a; az
boaiazbiaz $ ao

LF Mapping: The ith occurrence of a character cin L and the ith occurrence of ¢
in F correspond to the same occurrencein T

However we rank occurrences of ¢, ranks appear in the same order in Fand L

Burrows-Wheeler Transform: LF Mapping

Why does the LF Mapping hold?

Why are these

as in this order

relative to
each other?

$abaaba;

"b1a$abaaz
boaabas$ a

They're sorted by
right-context

$ abaabla:

az S$abaab;
atabas$ abo

a> b a$ abla;

aobaabas$

b:aSabala

aO|

boaabas$

They're sorted by
right-context

Occurrences of ¢ in F are sorted by right-context. Same for L!

\ Why are these

as in this order
« relative to

/each other?

Whatever ranking we give to characters in T, rank orders in F and L will match

Burrows-Wheeler Transform: LF Mapping

BWM with T-ranking:

F L

$ do bo d] A2 b1 as
as $ ao bo ay az b,
a1 42 b1 ds $ do bo
ax b1 as $ ao bo a;
aoboaiazbiaz $
biaz $ ao bo a; a>
bo a; a2 by as $ ao

We'd like a different ranking so that for a given character, ranks are in
ascending order as we look down the F / L columnes...

Burrows-Wheeler Transform: LF Mapping

BWM with B-ranking:

F L

S do

do bo

a b1

a> a1 Ascending rank
ds3 $

bo -)

\ 4 b1 d3 v

F now has very simple structure: a $, a block of as with ascending ranks, a
block of bs with ascending ranks

Burrows-Wheeler Transform

L

a0

bo

b1 «<— Which BWM row begins with b7
ai Skip row starting with $ (1 row)
$ Skip rows starting with a (4 rows)

Skip row starting with bo (1 row)
a2

Answer: row 6

ds

Burrows-Wheeler Transform

Say T has 300 As, 400 Cs, 250 Gsand 700 Tsand $ <A< C<G<T

Which BWM row (0-based) begins with G100? (Ranks are B-ranks.)

Skip row starting with $ (1 row)

Skip rows starting with A (300 rows)

Skip rows starting with € (400 rows)

Skip first 100 rows starting with G (100 rows)

Answer:row 1 + 300 + 400 + 100 = row 801

Burrows-Wheeler Transform: reversing

Reverse BWT(T) starting at right-hand-side of T and moving left

Start in first row. F must have $. L contains F L
character just prior to $: ao

_)S

ao: LF Mapping says this is same occurrence of a do

as firstain F. Jump to row beginning with ag. L

contains character just prior to ao: bo.

Repeat for bo, get a2 asy;
Repeat for a2, get a1 bo

Repeat for a1, get b1

Repeat for b1, get a3

Repeat for a3, get §, done Reverse of chars we visited=az b1aiazboao$=T

Burrows-Wheeler Transform: reversing

Another way to visualize reversing BWT(T):

F L F L F L F L F L F L
—— $S—ao

ao—>b

b1—>a3

T: azsbiatazboao$

asz-»$S

def

def

def

Burrows-Wheeler Transform: reversing

rankBwt (bw) :

' Given BWT string bw, return parallel list of B-ranks. Also
returns tots: map from character to # times it appears. '''

tots = dict()

ranks = []

for ¢ in bw:
if ¢ not in tots: tots[c] = ©
ranks.append(tots[c])
tots[c] += 1

return ranks, tots

firstCol(tots):

' Return map from character to the range of rows prefixed by

the character. '''

first = {}

totc = 0

for ¢, count in sorted(tots.iteritems()):
first[c] = (totc, totc + count)
totc += count

return first

reverseBwt(bw):
" Make T from BWT(T) "'’
ranks, tots = rankBwt(bw)
first = firstCol(tots)
rowi = @ # start in first row
t = '$" # start with rightmost character
while bw[rowi] != '$"':
c = bw[rowi]
t =c + t # prepend to answer
jump to row that starts with c of same rank
rowi = first[c][@] + ranks[rowi]
return t

Calculate B-ranks and count
occurrences of each char

Make concise representation
of first BWM column

Do reversal

Python example:
http://nbviewer.ipython.org/6860491

http://nbviewer.ipython.org/6860491
http://nbviewer.ipython.org/6860491

Burrows-Wheeler Transform: reversing

>>> reverseBwt("w$wwdd nnoooaattTmmmrrrrrrooo ooo")
'‘Tomorrow_and_tomorrow _and tomorrow$'

>>> reverseBwt("s$esttssfftteww hhmmbootttt ii woeeaaressli ")
'It was_the best of times it was_the worst of times$'

>>> reverseBwt("u gleeeengj mlhl nnnnt$nwj 1ggIolo iiiiarfcmylo oo ")
'in_the_jingle jangle morning I1l come_ following you$'

def reverseBwt(bw):
"'' Make T from BWT(T) "'’

ranks list is m integers > ranks, tots = rankBwt(bw)
| / first = firstCol(tots)
Iong. We'll fix later. rowi = @ # start in first row
t = '$" # start with rightmost character
while bw[rowi] != "$':

c = bw[rowi]
t =c+ t # prepend to answer
jump to row that starts with c of same rank
rowi = first[c][@] + ranks[rowi]
return t

Burrows-Wheeler Transform

We've seen how BWT is useful for compression:

Sorts characters by right-context, making a more compressible string

And how it's reversible:

Repeated applications of LF Mapping, recreating T from right to left

How is it used as an index?

FM Index

FM Index: an index combining the BWT with a few small auxilliary

data structures

“FM” supposedly stands for “Full-text Minute-space.”’
(But inventors are named Ferragina and Manzini)

Core of index consists of Fand L from BWM:

F can be represented very simply
(1 integer per alphabet character)

And L is compressible

Potentially very space-economical!

Paolo Ferragina, and Giovanni Manzini. "Opportunistic data
structures with applications." Foundations of Computer Science,
2000. Proceedings. 41st Annual Symposium on. IEEE, 2000.

ST Y Y WM M
QO WNY T 9 -~

Not stored in index

FM Index: querying

Though BWM is related to suffix array, we can't query it the same way

S a 6|S

a b 5|la$

a b 2laabas$

a a 3laba$

a S Olabaaba$
b a 4lba$

b a 1lbaaba$

N

We don't have these columns; binary search isn't possible

FM Index: querying

Look for range of rows of BWM(T) with P as prefix

Do this for P’s shortest suffix, then extend to successively longer
suffixes until range becomes empty or we've exhausted P

P=aba

F L

S as
Easy to find all the ao b
rows beginning with | (a, bo
a, thanks to F's a> ai
simple structure as S

bo d>2

FM Index: querying

We have rows beginning with @, now we seek rows beginning with ba

P=aba p=aba
F L F L
3 ao $ ao
ao bo: do bo
ai b1 <« Look at those rows in L. ai b1
a2 ai bo, b1 are bs occuring just to left. az ai
as S 1 ~as S
bo a2 Use LF Mapping. Let new bo a>
—>
b; as range delimit those bs b as

Now we have the rows with prefix ba

FM Index: querying

We have rows beginning with ba, now we seek rows beginning with aba

P=aba P=aba
F L F [
S ao S ao
ao bo do bo
di o di b
a> ail , d> di
Use LF Mapping —
bo o a2, @3 occur just to left. bo a
b as; b1 as

Now we have the rows with prefix aba

FM Index: querying

Now we have the same range, [3, 5), we would

P=aba have got from querying suffix array
F L
S ao 6|$
do bo 5la $
_a b [2]laaba$
a: a abal$
3,3 3,5
[)__33 $ |)__abaaba$
bo a> 4bas$
Where are b as Tlbaabas$

these?

Unlike suffix array, we don't immediately know where the
matches areinT...

FM Index: querying

When P does not occur in T, we will eventually fail to find the next character
in L:

P=bba
F L
S do
do bo
ai b1
d> ai
a3 S
Rows with ba prefix I bo 92 14— No bs!
b ds3

FM Index: querying

If we scan characters in the last column, that can be very slow, O(m)

P=aba
F L
S as
do b1
a b
1 % | Scan, looking for bs
a>z ai
as S v
bo a>2

FM Index: lingering issues

(1) Scanning for preceding

character is slow

S ao
ao bo
di of
a> ai
as S
bo d2
b as

O(m)
scan

(2) Storing ranks takes too much space

def reverseBwt(bw):

m/

integers

'" Make T from BWT(T) '
ranks, tots = rankat(bw)
first = firstCol(tots)
row1 = 0

wh11e bw[row1] I= "$":

c = bw[rowi]
t=c+ t
rowi = first[c][0] + ranks[rowi]

return t

(3) Need way to find where matches

occurinT:

Where?

$

do

FM Index: fast rank calculations

F L
S ao
Is there an O(1) way to :‘1’ g‘:
determine which bs as a
precede the as in our range? (33 S
bo a2
b a3
Tally
F L ab
$ a 0|«
alb 1 .
Idea: pre-calculate # as, alb 2 ;/Ve Ien:f:nbLoi&rlmnt(:\il::an .
bsin L up to every row: ala 2|2 PP J
als 22|
b a 32
b a 412 O(1) time, but requires

m X | X | integers

FM Index: fast rank calculations

Another idea: pre-calculate # as, bs in L up to some rows, e.g. every 5t row.
Call pre-calculated rows checkpoints.

Tally
ab

110 |«— Lookup here succeeds as usual

<— Qops: not a checkpoint

3| 2 |<— Butthere’s one nearby

0 O WnNNoY T O —

C T O O 9 N ™

To resolve a lookup for character ¢ in non-checkpoint row, scan along L until
we get to nearest checkpoint. Use tally at the checkpoint, adjusted for # of cs
we saw along the way.

FM Index: fast rank calculations

What's my rank?
482 +2-1=483

/! b\
Checkpoint tally -> rank

as along the way

What's my rank?
439-2-1=436

Assuming checkpoints are spaced O(1)
distance apart, lookups are O(1)

O VO OO YO QT O VY v 99 9 T T QO e

Tally
a b
482 | 432
488 | 439

FM Index: a few problems

Solved! At the expense of adding checkpoints (O(m) integers) to index.

(1) F | (2) Ranking takes too much space
$ aO def reverseBwt(bw):
b — '" Make T from BWT(T) """
ranks, tots = rankBwt(bw)
ao bo /first = firstCol(tots)
i i rowi = 0
ai 1| This scanll(s mintegers ¢ - s il 1 s
while bw[rowi] != "$':
a2 a1 O(m) wor c = bw[rowi]
t=c+ t
a3 $ rowi = first[c][0] + ranks[rowi]
bO a2 - return t
b1 as

With checkpoints, we greatly reduce

#int ded f k
With checkpoints it’s O(1) Integers needed forranks

But it's still O(m) space - there’s literature
on how to improve this space bound

FM Index: a few problems

Not yet solved:

(3) Needaway to find where
these occurrences arein T:

If suffix array were part of index, we
could simply look up the offsets

F

L

>

>

T 9 9 W»n

0 9 N OO0 Y

Offsets: 0, 3

SA

—= | PO WIN|ULI O

S
as
aabas$
abas$
abaaba$
ba$
baaba$

S ao
do bo
dai b,
a2 G
ds $
bo a2
b as

But SA requires
m integers

FM Index: resolving offsets

Idea: store some, but not all, entries of the suffix array

F L SA
S a 6
a b

a b 2
a a—>X

a < >[0
b a 4
b a

Lookup for row 4 succeeds - we kept that entry of SA

Lookup for row 3 fails - we discarded that entry of SA

FM Index: resolving offsets

But LF Mapping tells us that the a at the end of row 3 corresponds to...
...the a at the begining of row 2

F SA

ST 9 99 99 O W»n
mmm4rml~
ND

And row 2 has a suffix array value = 2

So row 3 has suffix array value = 3 =2 (row 2's SA val) + 1 (# steps to row 2)

If saved SA values are O(1) positions apartin T, resolving offset is O(1) time

FM Index: problems solved

At the expense of adding some SA values (O(m) integers) to index
Call this the “SA sample”

Solved!

(3) Need a way to find where these
occurrences arein T:

S do
do bo
ai b
d2 di
as S
bo a2
b1 as

With SA sample we can do this in
O(1) time per occurrence

FM Index: small memory footprint

Components of the FM Index:

First column (F): ~ |2 | integers
Last column (L): m characters
SA sample: m - a integers, where a is fraction of rows kept
Checkpoints: m x| 2 | - b integers, where b is fraction of

rows checkpointed

Example: DNA alphabet (2 bits per nucleotide), T = human genome,
a=1/32,b=1/128

First column (F): 16 bytes
Last column (L): 2 bits * 3 billion chars =750 MB

SA sample: 3 billion chars * 4 bytes/char / 32 = ~ 400 MB
Checkpoints: 3 billion * 4 bytes/char/ 128 =~ 100 MB

Total < 1.5 GB

NGBWT:
BWT Tools for NGS Datasets

Travis Gagie
et al.

University of Pisa
July 16th, 2018

NGBWT

abstract

The Burrows-Wheeler Transform (BWT) is the basis of several
tools that have enabled the genomics revolution, but researchers
developing those tools are now victims of their own success:
next-generation sequencing (NGS) has resulted in genomic
databases so large that we strain to build their BWTs, and we
can no longer afford the auxiliary data structures we used to take
for granted. We are now losing functionality in practice because
some of our techniques do not scale. The BWTs themselves
remain small and fast and beautiful, however — and thus worth
the effort necessary to develop parallel, external-memory,
lightweight construction algorithms and equally compressible
auxiliary data structures. This talk will review the constraints we
must adapt to, recent theoretical and practical successes, and
some of the targets we should aim for.

NGBWT

FM-index

summary

Theorem (FM: FOCS '00, JACM 2005)

Given a text T[l..n] and k < (1 —€)log, n, we can store T
in nH,(T) + o(nlog o) bits, where H(T) < lgo is the
kth-order empirical entropy of T, such that later, given a
pattern P[1..m], we can count the occurrences of P in T
in O(mloglogo) time and then report their locations in
O(log'*€ n) time per occurrence.

NGBWT

motivation

background
(1973-2000)

CSA
FM-index
RLFM-index
2008

2017

2018

Langmead et al.

PFP
20207

what next?

Bowtie

Bowtie (sequence analysis)

From Wikipedia, the free encyclopedia

Bowtie is a software used for li itand lysis in [11:The source
code for the package is distributed freely and compiled binaries are avalable for Linux, macOS and Windows platforms. As of
2017, the Genome Biology paper describing the original Bowtie method has been cited more than 11,000 times.["] Bowtie is open-
source software and is currently maint

Bowtie
Original author(s) Ben Langmead,Cole Trapnell, Minai Pop
and Steven Saizberg
Developer(s) Ben Langmead et al

ed by Johns Hopkins University.

Contents Ihido] Stable release 2.3.4/29 Decomber 2017; 6 months ago
1 Hitory Repository. oG convBenLagmesdbonied
2 Bowtie 2 Operating system Linux, macOS, Windows
3 References size 14.7 MB (Source)
4 Extemal links o P~
pe Joinformatics.
Website o bowtie-bio sourceforge et

History |[edi]

The Bowtie sequence aligner was originally developed by Ben Langmead et al. at the University of Maryland in 2009.!! The aligner is typically used with short reads and a large reference
genome, or for whole genome analysis. Bowtie is promoted as "an ultrafast, memory-effcient short aligner for short DA sequences.” The speed increase of Bowtie is parlly due to
implementing the Burrows-Wheeler transform for aligning, which reduces the memory footprint (typically to around 2.2GB for the human genome);?] a similar method is used by the BWAE!
and SOAP2!*) alignment methods. 2/

Bowtio conducts a quality-aware, greedy, randomized, depth-first search through the space of possible alignments. Because the search is greedy, the first valid alignment encountered by
Bowtie will not necessarily be the ‘best in terms of the number of mismatches or in terms of quality.

Bowtie is used as a sequence aligner by a number of other related bioinformatics algorithms, including TopHat, ! Cufflinks(®l and the CummeRbund Bioconductor package. ™!

Bowtie 2 [edit)

On 16 October 2011, the developers released a beta fork of the project called Bowtie 2./ In addition to the Burrows-Whesler transform, Bowtie 2 also uses an FN-index (similar to a suffix
array) to keep its memory footprint small. Due to ts implementation, Bowtie 2 is more suited to finding longer, gapped alignments in comparison with the original Bowtie method. There is no
upper limit on read length in Bowtie 2 and it allows ali 2 i haracters in

CST

NGBWT
With auxiliary data structures that are small relative to the
entropy-compressed FM-index, we can support the
following operations efficiently:
Operation Description
FM-index Root() Suffix tree root.
Locate(v) Text position i of leaf v.
Ancestor(v,w) Whether v is an ancestor of w.
SDepth(v) String depth for internal nodes, i.e., length of string represented by v.
TDepth(v) Tree depth, i.e., depth of tree node v.
Count(v) Number of leaves in the subtree of v.
Parent(v) Parent of v.
FChild(v) First child of v.
NSibling(v) Next sibling of v.
SLink(v) Suffix-link, i.e., if v represents a - «v then the node that represents «, for a € [1..0].
WLink(v, a) Weiner-link, i.e., if v represents « then the node that represents a- a.
SLinki(v) Iterated suffix-link.
LCA(v, w) Lowest common ancestor of v and w.
Child(v, a) Child of v by letter a.
Letter(v, i) The ith letter of the string represented by v.
LAQs(v, d) String level ancestor, i.e., the highest ancestor of v with string-depth > d.

LAQT(V, d) Tree level ancestor, i.e., the ancestor of v with tree-depth d.

CST

With auxiliary data structures that are small relative to the
entropy-compressed FM-index, we can support the
following operations efficiently:

Operation Description

Root() Suffix tree root.

Locate(v) Text position 7 of leaf v.

Ancestor(v,w) Whether v is an ancestor of w.

SDepth(v) String depth for internal nodes, i.e., length of string represented by v.
TDepth(v) Tree depth, i.e., depth of tree node v.

Count(v) Number of leaves in the subtree of v.

Parent(v) Parent of v.

FChild(v) First child of v.

NSibling(v) Next sibling of v.

SLink(v) Suffix-link, i.e., if v represents a- « then the node that represents «, for a € [1..0].
WLink(v, a) Weiner-link, i.e., if v represents « then the node that represents a - a.
SLink(v) Iterated suffix-link.

LCA(v, w) Lowest common ancestor of v and w.

Child(v, a) Child of v by letter a.

Letter(v, i) The ith letter of the string represented by v.

LAQs(v,d) String level ancestor, i.e., the highest ancestor of v with string-depth > d.

LAQ7(v,d) Tree level ancestor, i.e., the ancestor of v with tree-depth d.

Cost per Genome

motivation

Moore's Law

National Human Genome
Research Institute

genome.govisequencingcosts

20012002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

NGBWT

RLFM-index

RLFM-index

Theorem (MNSV: SPIRE '08, RECOMB '09, JCB
2010)

Given a text T[l..n] and a sample rate d, we can store T
in O(r + n/d) space, where r is the number of runs in the
BWT of T, such that later, given a pattern P[1..m|, we
can count the occurrences of P in T in O(mloglog n) time
and then report their locations in O(d loglog n) time per
occurrence.

NGBWT

motivation

background
(1973-2000)

CSA

FM-index
RLFM-index
2008

2017

2018

Langmead et al.
PFP

20207

what next?

abstract

The Burrows-Wheeler Transform (BWT) is the basis of several
tools that have enabled the genomics revolution, but researchers
developing those tools are now victims of their own success:
next-generation sequencing (NGS) has resulted in genomic
databases so large that we strain to build their BWTs, and we
can no longer afford the auxiliary data structures we used to take
for granted. We are now losing functionality in practice because
some of our techniques do not scale. The BWTs themselves
remain small and fast and beautiful, however — and thus worth
the effort necessary to develop parallel, external-memory,
lightweight construction algorithms and equally compressible
auxiliary data structures. This talk will review the constraints we
must adapt to, recent theoretical and practical successes, and
some of the targets we should aim for.

2018

NGBWT

r-index

Theorem (GNP: SODA '18)

We can store a given text T[1..n] in O(r) words, where r is
the number of runs in the BWT of T, such that later,
given a pattern P[1..m], we can count the occurrences of
P in T in O(mloglog n) time and then report their
locations in O(loglog n) time per occurrence.

2018

NGBWT

r-index

Theorem (GNP: SODA '18)

We can store a given text T[1..n] in O(r) words, where r is
the number of runs in the BWT of T, such that later,
given a pattern P[1..m], we can count the occurrences of
P in T in O(mloglog n) time and then report their
locations in O(loglog n) time per occurrence.

Theorem (BGI: CPM '18)

We can prepend a character to T and update the r-index
in O(log r) time.

CST

NGBWT
With auxiliary data structures that fit in O(rlog(n/r))
words, we can still support the following operations
efficiently:
Operation Description
Root() Suffix tree root.
Locate(v) Text position i of leaf v.
Ancestor(v,w) Whether v is an ancestor of w.
SDepth(v) String depth for internal nodes, i.e., length of string represented by v.
TDepth(v) Tree depth, i.e., depth of tree node v.
Count(v) Number of leaves in the subtree of v.
2018 Parent(v) Parent of v.
FChild(v) First child of v.
NSibling(v) Next sibling of v.
SLink(v) Suffix-link, i.e., if v represents a - «v then the node that represents «, for a € [1..0].
WLink(v, a) Weiner-link, i.e., if v represents « then the node that represents a- a.
SLinki(v) Iterated suffix-link.
LCA(v, w) Lowest common ancestor of v and w.
Child(v, a) Child of v by letter a.
Letter(v, i) The ith letter of the string represented by v.
LAQs(v, d) String level ancestor, i.e., the highest ancestor of v with string-depth > d.

LAQT(V, d) Tree level ancestor, i.e., the ancestor of v with tree-depth d.

g

Total index size in MB
g

Langmead et al.

3 = - .

E coli strains

