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Preliminaries: Suffix Trees

Let T = T [0 . . n − 1] be our text and Ti = T [i . . n − 1], i ∈ [0, n].

For any subset C ∈ [0, n], let TC = {Ti |i ∈ C}.

Thus T[0. .n] contains n + 1 strings of total length Θ(n2).

Suffix tree is a compact trie for T[0. .n]: the set of all suffixes of T .

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$
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Preliminaries: Suffix Trees

We assume there is an extra unique letter $ at the end of T :
I No suffix is a prefix of another suffix: T[0. .n] is prefix free.
I All nodes in the suffix tree representing a suffix are leaves.

This simplifies algorithms!

We also decorate leaves with starting positions from T .

Example
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Preliminaries: Suffix Trees

Why compact? How much space does it take?
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Preliminaries: Suffix Trees

Why compact? How much space does it take?

Example

Let T = CAGAGA$.

$
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A$

$

GA$
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CAGAGA$

[4, 6]

$
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4

2

I Edge labels are substrings of T : represented by T intervals.
I Exactly n + 1 leaves and at most n internal nodes.
I At most 2n edges.

Space linear in n: O(n).
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Preliminaries: Suffix Trees

What about construction?

Theorem (Farach, FOCS 1997)

Let T be a string of length n over a linearly-sortable alphabet. The
suffix tree of T can be constructed in O(n) time.

Linearly-sortable alphabet: Σ = {1, 2, . . . , nO(1)}.

Farach’s algorithm is in fact optimal for all alphabets!

In bioinformatics we usually have that Σ = O(1).
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Preliminaries: Suffix Trees

An important auxiliary tool are suffix links:

I Let Su denote the string represented by node u.
I slink(u) is the node v such that Sv is the longest proper suffix

of Su, i.e., if Su = T [i . . j ] then Sv = T [i + 1 . . j ].
I Constructible for all internal nodes in O(n) time.

Example

Let T = CAGAGA$. Su = AGA and Sv = GA.
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GA$
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Application 1: Exact string matching

PREPROCESS: text T
QUERY: a pattern P; return all occ starting positions of P in T

Example

Let T = CAGAGA$ and P = AGA.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

u

Traverse the subtree rooted at u with Su = P. Its size is O(occ).

Theorem
Exact string matching queries can be answered in O(|P|+ occ)
time after O(n) time preprocessing.

Pissis Suffix Tree Applications



Application 1: Exact string matching

PREPROCESS: text T
QUERY: a pattern P; return all occ starting positions of P in T

Example

Let T = CAGAGA$ and P = AGA.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

u

Traverse the subtree rooted at u with Su = P. Its size is O(occ).

Theorem
Exact string matching queries can be answered in O(|P|+ occ)
time after O(n) time preprocessing.

Pissis Suffix Tree Applications



Application 1: Exact string matching

PREPROCESS: text T
QUERY: a pattern P; return all occ starting positions of P in T

Example

Let T = CAGAGA$ and P = AGA.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

u

Traverse the subtree rooted at u with Su = P.

Its size is O(occ).

Theorem
Exact string matching queries can be answered in O(|P|+ occ)
time after O(n) time preprocessing.

Pissis Suffix Tree Applications



Application 1: Exact string matching

PREPROCESS: text T
QUERY: a pattern P; return all occ starting positions of P in T

Example

Let T = CAGAGA$ and P = AGA.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

u

Traverse the subtree rooted at u with Su = P. Its size is O(occ).

Theorem
Exact string matching queries can be answered in O(|P|+ occ)
time after O(n) time preprocessing.

Pissis Suffix Tree Applications



Application 1: Exact string matching

PREPROCESS: text T
QUERY: a pattern P; return all occ starting positions of P in T

Example

Let T = CAGAGA$ and P = AGA.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

u

Traverse the subtree rooted at u with Su = P. Its size is O(occ).

Theorem
Exact string matching queries can be answered in O(|P|+ occ)
time after O(n) time preprocessing.

Pissis Suffix Tree Applications



Application 2: Number of distinct substrings

INPUT: text T
OUTPUT: the number of distinct substrings

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

Every locus (node, depth) in the suffix tree represents a substring
of the text and every substring is represented by some locus.
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Application 2: Number of distinct substrings

INPUT: a text T
OUTPUT: the number of distinct substrings

Example

Let T = CAGAGA$. Locus (u, 4) represents CAGA.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

u

Every locus (node, depth) in the suffix tree represents a substring
of the text and every substring is represented by some locus.

Pissis Suffix Tree Applications



Application 2: Number of distinct substrings

INPUT: text T
OUTPUT: the number of distinct substrings

Example

Let T = CAGAGA$.
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$

GA$

GA

CAGAGA$

GA$

$

Count the number of distinct loci using a suffix tree traversal.
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Application 3: Longest repeating substring

INPUT: text T
OUTPUT: a longest string occurring at least twice

Example

Let T = CAGAGA$. The answer is AGA.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

Find a deepest internal node using a traversal of the suffix tree.

Theorem
A longest repeating substring can be found in O(n) time.
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Application 4: Longest common substring

INPUT: text T and a text S
OUTPUT: a longest common substring

Example

Suffix tree of T#S$.

...#

...$

...$

...#

Find a deepest internal node containing both T - and S-leaves.

Theorem
A longest common substring can be found in O(n + |S |) time.

Pissis Suffix Tree Applications



Application 4: Longest common substring

INPUT: text T and a text S
OUTPUT: a longest common substring

Example

Suffix tree of T#S$.

...#

...$

...$

...#

Find a deepest internal node containing both T - and S-leaves.

Theorem
A longest common substring can be found in O(n + |S |) time.

Pissis Suffix Tree Applications



Application 4: Longest common substring

INPUT: text T and a text S
OUTPUT: a longest common substring

Example

Suffix tree of T#S$.

...#

...$

...$

...#

Find a deepest internal node containing both T - and S-leaves.

Theorem
A longest common substring can be found in O(n + |S |) time.

Pissis Suffix Tree Applications



Application 4: Longest common substring

INPUT: text T and a text S
OUTPUT: a longest common substring

Example

Suffix tree of T#S$.

...#

...$

...$

...#

Find a deepest internal node containing both T - and S-leaves.

Theorem
A longest common substring can be found in O(n + |S |) time.

Pissis Suffix Tree Applications



Application 5: Matching statistics

PREPROCESS: text T
QUERY: a text S ; return the longest prefix of S [i . .] that is a
substring of T , for all i ∈ [0, |S | − 1]

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Scan S using the suffix tree of T .
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say S [i . . j − 1].
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2

Spell S [i . .] as much as possible; say S [i . . j − 1].
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Mismatch at S [i . . j ]?

Use suffix link as the failure transition!

Pissis Suffix Tree Applications



Application 5: Matching statistics

PREPROCESS: text T
QUERY: a text S ; return the longest prefix of S [i . .] that is a
substring of T , for all i ∈ [0, |S | − 1]

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Mismatch at S [i . . j ]? Use suffix link as the failure transition!

Pissis Suffix Tree Applications



Application 5: Matching statistics

PREPROCESS: text T
QUERY: a text S ; return the longest prefix of S [i . .] that is a
substring of T , for all i ∈ [0, |S | − 1]

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

This takes us at node u: Su = S [i + 1 . . j ].

Repeat from here!
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Theorem
Matching statistics of S with respect to T can be computed in
O(|S |) time after O(n) time preprocessing.
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Application 6: Longest common prefix

PREPROCESS: text T
QUERY: a pair (i , j); return the longest common prefix of T [i . .]
and T [j . .]

The lowest common ancestor (LCA) of two nodes u and v is the
deepest node that is an ancestor of both u and v .

u

v

Theorem (Bender and Farach-Colton, LATIN 2000)

Any tree of size O(N) can be preprocessed in O(N) time so that
the LCA of any two nodes can be computed in O(1) time.
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Application 6: Longest common prefix

PREPROCESS: text T
QUERY: a pair (i , j); return the longest common prefix of T [i . .]
and T [j . .]

Example

Let T = CAGAGA$. Let (1, 5) be the query. The answer is A.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Theorem
Longest common prefix queries can be answered in O(1) time after
O(n) time preprocessing.
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Application 7: Longest palindromic substring

INPUT: text T
OUTPUT: a longest palindromic substring of T

Palindrome: S = ATTA = SR = ATTA.

I Construct the suffix tree of T#TR$.

I Preprocess the suffix tree for LCA queries.

I Say we are interested in odd-length palindromes.

I Answer LCA queries for Ti and TR
n−i , for all i .

Ti

TR
n−i
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Application 7: Longest palindromic substring

INPUT: text T
OUTPUT: a longest palindromic substring of T

Ti

TR
n−i

I A deepest LCA represents the longest odd-length palindrome.
I Even-length palindromes are handled analogously.
I Take the longer of the two as the answer.

Theorem
A longest palindromic substring can be computed in O(n) time.
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Application 8: Approximate string matching

INPUT: text T , a pattern P, and an integer k > 0
OUTPUT: all positions i in T : dH(T [i + |P| − 1],P) ≤ k

Hamming distance dH : dH(GCTA, GCAA) = 1; dH(GCTA, ACAA) = 2.

I Construct the suffix tree of P#T$.

I Answer LCA query for Ti and P, for i = 0.

I Say this gives an LCP of length `1.

Ti

P

`1
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Application 8: Approximate string matching

INPUT: text T , a pattern P, and an integer k > 0
OUTPUT: all positions i in T : dH(T [i + |P| − 1],P) ≤ k

I “Jump” over the mismatch T [i + `1] 6= P[`1].

I Via answering the LCA query for Ti+`1+1 and P`1+1.

I This gives an LCP of length `2.

Ti+`1+1

P`1+1

`2
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Application 8: Approximate string matching

INPUT: text T , a pattern P, and an integer k > 0
OUTPUT: all positions i in T : dH(T [i + |P| − 1],P) ≤ k

Ti+`1+1

P`1+1

`2

I Answer (at most) k + 1 queries per i .

I Report i if the total length `1 + 1 + `2 + 1 + · · · is at least |P|.
I Repeat for all i ∈ [1, n].

Theorem (Landau and Vishkin, TCS 1986)

Approximate string matching can be solved in O(kn) time.
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Application 9: Lempel-Ziv factorization

INPUT: text T
OUTPUT: Lempel-Ziv factorization of T

LZ factorization of T :

I T = F0 · F1 · · ·Fk ;

I Each Fi is the longest prefix of Fi · · ·Fk with some occurrence
to the left;

I (or a single letter in case this prefix is empty.)

Example

Let T = abbaabbbaaabab. The LZ factorization of T is
a · b · b · a · abb · baa · ab · ab.

Why do we care? LZ factorization is a basic and powerful
technique for text compression (and string algorithms)!
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Application 9: Lempel-Ziv factorization

INPUT: text T
OUTPUT: Lempel-Ziv factorization of T

I Construct the suffix tree of T .

I Decorate each internal node with the leftmost starting
position the string it represents occurs.

I How? Use a depth-first traversal and propagate the starting
positions upwards.

I Run the matching statistics algorithm for T with respect to T .

I For each longest match check the leftmost starting position.

Theorem
LZ factorization can be computed in O(n) time.
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Application 10: Shortest unique substring

INPUT: text T
OUTPUT: a shortest unique substring of T

I Construct the suffix tree of T .
I For each leaf node labeled i , for all i ∈ [0, n], pick up the

closest ancestor v using a depth-first traversal.

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2
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Application 10: Shortest unique substring

INPUT: text T
OUTPUT: a shortest unique substring of T

I Take a shortest substring among all i .

Example

Let T = CAGAGA$. The shortest unique substring is C.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Theorem
A shortest unique substring can be computed in O(n) time.
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Take-home message

I Suffix tree is a fundamental data structure for processing any
type of sequential data.

I It provides fast implementations of many important string
operations.

I Practice? Suffix arrays enhanced with some extra information.

Thanks!
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