
Advanced Data Structures for Sequence Analysis

Solon P. Pissis

Department of Informatics, King’s College London, London, UK

solon.pissis@kcl.ac.uk

October 26, 2018

University of Central Florida, Orlando,FL

Pissis Suffix Tree Applications

solon.pissis@kcl.ac.uk

Suffix Tree Applications

Let us have only a glimpse...

Pissis Suffix Tree Applications

Suffix Tree Applications

Let us have only a glimpse...

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

Let T = T [0 . . n − 1] be our text and Ti = T [i . . n − 1], i ∈ [0, n].

For any subset C ∈ [0, n], let TC = {Ti |i ∈ C}.

Thus T[0. .n] contains n + 1 strings of total length Θ(n2).

Suffix tree is a compact trie for T[0. .n]: the set of all suffixes of T .

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

Let T = T [0 . . n − 1] be our text and Ti = T [i . . n − 1], i ∈ [0, n].

For any subset C ∈ [0, n], let TC = {Ti |i ∈ C}.

Thus T[0. .n] contains n + 1 strings of total length Θ(n2).

Suffix tree is a compact trie for T[0. .n]: the set of all suffixes of T .

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

Let T = T [0 . . n − 1] be our text and Ti = T [i . . n − 1], i ∈ [0, n].

For any subset C ∈ [0, n], let TC = {Ti |i ∈ C}.

Thus T[0. .n] contains n + 1 strings of total length Θ(n2).

Suffix tree is a compact trie for T[0. .n]: the set of all suffixes of T .

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

Let T = T [0 . . n − 1] be our text and Ti = T [i . . n − 1], i ∈ [0, n].

For any subset C ∈ [0, n], let TC = {Ti |i ∈ C}.

Thus T[0. .n] contains n + 1 strings of total length Θ(n2).

Suffix tree is a compact trie for T[0. .n]: the set of all suffixes of T .

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

Let T = T [0 . . n − 1] be our text and Ti = T [i . . n − 1], i ∈ [0, n].

For any subset C ∈ [0, n], let TC = {Ti |i ∈ C}.

Thus T[0. .n] contains n + 1 strings of total length Θ(n2).

Suffix tree is a compact trie for T[0. .n]: the set of all suffixes of T .

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

Let T = T [0 . . n − 1] be our text and Ti = T [i . . n − 1], i ∈ [0, n].

For any subset C ∈ [0, n], let TC = {Ti |i ∈ C}.

Thus T[0. .n] contains n + 1 strings of total length Θ(n2).

Suffix tree is a compact trie for T[0. .n]: the set of all suffixes of T .

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

We assume there is an extra unique letter $ at the end of T :
I No suffix is a prefix of another suffix: T[0. .n] is prefix free.
I All nodes in the suffix tree representing a suffix are leaves.

This simplifies algorithms!

We also decorate leaves with starting positions from T .

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

We assume there is an extra unique letter $ at the end of T :

I No suffix is a prefix of another suffix: T[0. .n] is prefix free.
I All nodes in the suffix tree representing a suffix are leaves.

This simplifies algorithms!

We also decorate leaves with starting positions from T .

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

We assume there is an extra unique letter $ at the end of T :
I No suffix is a prefix of another suffix: T[0. .n] is prefix free.

I All nodes in the suffix tree representing a suffix are leaves.

This simplifies algorithms!

We also decorate leaves with starting positions from T .

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

We assume there is an extra unique letter $ at the end of T :
I No suffix is a prefix of another suffix: T[0. .n] is prefix free.
I All nodes in the suffix tree representing a suffix are leaves.

This simplifies algorithms!

We also decorate leaves with starting positions from T .

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

We assume there is an extra unique letter $ at the end of T :
I No suffix is a prefix of another suffix: T[0. .n] is prefix free.
I All nodes in the suffix tree representing a suffix are leaves.

This simplifies algorithms!

We also decorate leaves with starting positions from T .

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

We assume there is an extra unique letter $ at the end of T :
I No suffix is a prefix of another suffix: T[0. .n] is prefix free.
I All nodes in the suffix tree representing a suffix are leaves.

This simplifies algorithms!

We also decorate leaves with starting positions from T .

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

We assume there is an extra unique letter $ at the end of T :
I No suffix is a prefix of another suffix: T[0. .n] is prefix free.
I All nodes in the suffix tree representing a suffix are leaves.

This simplifies algorithms!

We also decorate leaves with starting positions from T .

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

Why compact? How much space does it take?

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

Why compact?

How much space does it take?

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

Why compact? How much space does it take?

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

Why compact? How much space does it take?

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

Why compact? How much space does it take?

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

$

0

1

3

5

6

4

2

G

A

$

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

Why compact? How much space does it take?

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

[4, 6]

$

0

1

3

5

6

4

2

I Edge labels are substrings of T : represented by T intervals.
I Exactly n + 1 leaves and at most n internal nodes.
I At most 2n edges.

Space linear in n: O(n).

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

Why compact? How much space does it take?

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

[4, 6]

$

0

1

3

5

6

4

2

I Edge labels are substrings of T : represented by T intervals.

I Exactly n + 1 leaves and at most n internal nodes.
I At most 2n edges.

Space linear in n: O(n).

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

Why compact? How much space does it take?

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

[4, 6]

$

0

1

3

5

6

4

2

I Edge labels are substrings of T : represented by T intervals.
I Exactly n + 1 leaves and at most n internal nodes.

I At most 2n edges.

Space linear in n: O(n).

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

Why compact? How much space does it take?

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

[4, 6]

$

0

1

3

5

6

4

2

I Edge labels are substrings of T : represented by T intervals.
I Exactly n + 1 leaves and at most n internal nodes.
I At most 2n edges.

Space linear in n: O(n).

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

Why compact? How much space does it take?

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

[4, 6]

$

0

1

3

5

6

4

2

I Edge labels are substrings of T : represented by T intervals.
I Exactly n + 1 leaves and at most n internal nodes.
I At most 2n edges.

Space linear in n: O(n).
Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

What about construction?

Theorem (Farach, FOCS 1997)

Let T be a string of length n over a linearly-sortable alphabet. The
suffix tree of T can be constructed in O(n) time.

Linearly-sortable alphabet: Σ = {1, 2, . . . , nO(1)}.

Farach’s algorithm is in fact optimal for all alphabets!

In bioinformatics we usually have that Σ = O(1).

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

What about construction?

Theorem (Farach, FOCS 1997)

Let T be a string of length n over a linearly-sortable alphabet. The
suffix tree of T can be constructed in O(n) time.

Linearly-sortable alphabet: Σ = {1, 2, . . . , nO(1)}.

Farach’s algorithm is in fact optimal for all alphabets!

In bioinformatics we usually have that Σ = O(1).

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

What about construction?

Theorem (Farach, FOCS 1997)

Let T be a string of length n over a linearly-sortable alphabet. The
suffix tree of T can be constructed in O(n) time.

Linearly-sortable alphabet: Σ = {1, 2, . . . , nO(1)}.

Farach’s algorithm is in fact optimal for all alphabets!

In bioinformatics we usually have that Σ = O(1).

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

What about construction?

Theorem (Farach, FOCS 1997)

Let T be a string of length n over a linearly-sortable alphabet. The
suffix tree of T can be constructed in O(n) time.

Linearly-sortable alphabet: Σ = {1, 2, . . . , nO(1)}.

Farach’s algorithm is in fact optimal for all alphabets!

In bioinformatics we usually have that Σ = O(1).

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

What about construction?

Theorem (Farach, FOCS 1997)

Let T be a string of length n over a linearly-sortable alphabet. The
suffix tree of T can be constructed in O(n) time.

Linearly-sortable alphabet: Σ = {1, 2, . . . , nO(1)}.

Farach’s algorithm is in fact optimal for all alphabets!

In bioinformatics we usually have that Σ = O(1).

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

An important auxiliary tool are suffix links:

I Let Su denote the string represented by node u.
I slink(u) is the node v such that Sv is the longest proper suffix

of Su, i.e., if Su = T [i . . j] then Sv = T [i + 1 . . j].
I Constructible for all internal nodes in O(n) time.

Example

Let T = CAGAGA$. Su = AGA and Sv = GA.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

An important auxiliary tool are suffix links:

I Let Su denote the string represented by node u.

I slink(u) is the node v such that Sv is the longest proper suffix
of Su, i.e., if Su = T [i . . j] then Sv = T [i + 1 . . j].

I Constructible for all internal nodes in O(n) time.

Example

Let T = CAGAGA$. Su = AGA and Sv = GA.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

An important auxiliary tool are suffix links:

I Let Su denote the string represented by node u.
I slink(u) is the node v such that Sv is the longest proper suffix

of Su, i.e., if Su = T [i . . j] then Sv = T [i + 1 . . j].

I Constructible for all internal nodes in O(n) time.

Example

Let T = CAGAGA$. Su = AGA and Sv = GA.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

An important auxiliary tool are suffix links:

I Let Su denote the string represented by node u.
I slink(u) is the node v such that Sv is the longest proper suffix

of Su, i.e., if Su = T [i . . j] then Sv = T [i + 1 . . j].
I Constructible for all internal nodes in O(n) time.

Example

Let T = CAGAGA$. Su = AGA and Sv = GA.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Preliminaries: Suffix Trees

An important auxiliary tool are suffix links:

I Let Su denote the string represented by node u.
I slink(u) is the node v such that Sv is the longest proper suffix

of Su, i.e., if Su = T [i . . j] then Sv = T [i + 1 . . j].
I Constructible for all internal nodes in O(n) time.

Example

Let T = CAGAGA$. Su = AGA and Sv = GA.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Application 1: Exact string matching

PREPROCESS: text T
QUERY: a pattern P; return all occ starting positions of P in T

Example

Let T = CAGAGA$ and P = AGA.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

u

Traverse the subtree rooted at u with Su = P. Its size is O(occ).

Theorem
Exact string matching queries can be answered in O(|P|+ occ)
time after O(n) time preprocessing.

Pissis Suffix Tree Applications

Application 1: Exact string matching

PREPROCESS: text T
QUERY: a pattern P; return all occ starting positions of P in T

Example

Let T = CAGAGA$ and P = AGA.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

u

Traverse the subtree rooted at u with Su = P. Its size is O(occ).

Theorem
Exact string matching queries can be answered in O(|P|+ occ)
time after O(n) time preprocessing.

Pissis Suffix Tree Applications

Application 1: Exact string matching

PREPROCESS: text T
QUERY: a pattern P; return all occ starting positions of P in T

Example

Let T = CAGAGA$ and P = AGA.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

u

Traverse the subtree rooted at u with Su = P.

Its size is O(occ).

Theorem
Exact string matching queries can be answered in O(|P|+ occ)
time after O(n) time preprocessing.

Pissis Suffix Tree Applications

Application 1: Exact string matching

PREPROCESS: text T
QUERY: a pattern P; return all occ starting positions of P in T

Example

Let T = CAGAGA$ and P = AGA.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

u

Traverse the subtree rooted at u with Su = P. Its size is O(occ).

Theorem
Exact string matching queries can be answered in O(|P|+ occ)
time after O(n) time preprocessing.

Pissis Suffix Tree Applications

Application 1: Exact string matching

PREPROCESS: text T
QUERY: a pattern P; return all occ starting positions of P in T

Example

Let T = CAGAGA$ and P = AGA.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

u

Traverse the subtree rooted at u with Su = P. Its size is O(occ).

Theorem
Exact string matching queries can be answered in O(|P|+ occ)
time after O(n) time preprocessing.

Pissis Suffix Tree Applications

Application 2: Number of distinct substrings

INPUT: text T
OUTPUT: the number of distinct substrings

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

Every locus (node, depth) in the suffix tree represents a substring
of the text and every substring is represented by some locus.

Pissis Suffix Tree Applications

Application 2: Number of distinct substrings

INPUT: text T
OUTPUT: the number of distinct substrings

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

Every locus (node, depth) in the suffix tree represents a substring
of the text and every substring is represented by some locus.

Pissis Suffix Tree Applications

Application 2: Number of distinct substrings

INPUT: text T
OUTPUT: the number of distinct substrings

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

Every locus (node, depth) in the suffix tree represents a substring
of the text and every substring is represented by some locus.

Pissis Suffix Tree Applications

Application 2: Number of distinct substrings

INPUT: a text T
OUTPUT: the number of distinct substrings

Example

Let T = CAGAGA$. Locus (u, 4) represents CAGA.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

u

Every locus (node, depth) in the suffix tree represents a substring
of the text and every substring is represented by some locus.

Pissis Suffix Tree Applications

Application 2: Number of distinct substrings

INPUT: text T
OUTPUT: the number of distinct substrings

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

Count the number of distinct loci using a suffix tree traversal.

Pissis Suffix Tree Applications

Application 2: Number of distinct substrings

INPUT: text T
OUTPUT: the number of distinct substrings

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

Count the number of distinct loci using a suffix tree traversal.

Pissis Suffix Tree Applications

Application 2: Number of distinct substrings

INPUT: text T
OUTPUT: the number of distinct substrings

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

Theorem
The number of distinct substrings can be computed in O(n) time.

Pissis Suffix Tree Applications

Application 2: Number of distinct substrings

INPUT: text T
OUTPUT: the number of distinct substrings

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

Theorem
The number of distinct substrings can be computed in O(n) time.

Pissis Suffix Tree Applications

Application 3: Longest repeating substring

INPUT: text T
OUTPUT: a longest string occurring at least twice

Example

Let T = CAGAGA$. The answer is AGA.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

Find a deepest internal node using a traversal of the suffix tree.

Theorem
A longest repeating substring can be found in O(n) time.

Pissis Suffix Tree Applications

Application 3: Longest repeating substring

INPUT: text T
OUTPUT: a longest string occurring at least twice

Example

Let T = CAGAGA$. The answer is AGA.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

Find a deepest internal node using a traversal of the suffix tree.

Theorem
A longest repeating substring can be found in O(n) time.

Pissis Suffix Tree Applications

Application 4: Longest common substring

INPUT: text T and a text S
OUTPUT: a longest common substring

Example

Suffix tree of T#S$.

...#

...$

...$

...#

Find a deepest internal node containing both T - and S-leaves.

Theorem
A longest common substring can be found in O(n + |S |) time.

Pissis Suffix Tree Applications

Application 4: Longest common substring

INPUT: text T and a text S
OUTPUT: a longest common substring

Example

Suffix tree of T#S$.

...#

...$

...$

...#

Find a deepest internal node containing both T - and S-leaves.

Theorem
A longest common substring can be found in O(n + |S |) time.

Pissis Suffix Tree Applications

Application 4: Longest common substring

INPUT: text T and a text S
OUTPUT: a longest common substring

Example

Suffix tree of T#S$.

...#

...$

...$

...#

Find a deepest internal node containing both T - and S-leaves.

Theorem
A longest common substring can be found in O(n + |S |) time.

Pissis Suffix Tree Applications

Application 4: Longest common substring

INPUT: text T and a text S
OUTPUT: a longest common substring

Example

Suffix tree of T#S$.

...#

...$

...$

...#

Find a deepest internal node containing both T - and S-leaves.

Theorem
A longest common substring can be found in O(n + |S |) time.

Pissis Suffix Tree Applications

Application 5: Matching statistics

PREPROCESS: text T
QUERY: a text S ; return the longest prefix of S [i . .] that is a
substring of T , for all i ∈ [0, |S | − 1]

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Scan S using the suffix tree of T .

Pissis Suffix Tree Applications

Application 5: Matching statistics

PREPROCESS: text T
QUERY: a text S ; return the longest prefix of S [i . .] that is a
substring of T , for all i ∈ [0, |S | − 1]

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Scan S using the suffix tree of T .

Pissis Suffix Tree Applications

Application 5: Matching statistics

PREPROCESS: text T
QUERY: a text S ; return the longest prefix of S [i . .] that is a
substring of T , for all i ∈ [0, |S | − 1]

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Spell S [i . .] as much as possible;

say S [i . . j − 1].

Pissis Suffix Tree Applications

Application 5: Matching statistics

PREPROCESS: text T
QUERY: a text S ; return the longest prefix of S [i . .] that is a
substring of T , for all i ∈ [0, |S | − 1]

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Spell S [i . .] as much as possible; say S [i . . j − 1].

Pissis Suffix Tree Applications

Application 5: Matching statistics

PREPROCESS: text T
QUERY: a text S ; return the longest prefix of S [i . .] that is a
substring of T , for all i ∈ [0, |S | − 1]

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Mismatch at S [i . . j]?

Use suffix link as the failure transition!

Pissis Suffix Tree Applications

Application 5: Matching statistics

PREPROCESS: text T
QUERY: a text S ; return the longest prefix of S [i . .] that is a
substring of T , for all i ∈ [0, |S | − 1]

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Mismatch at S [i . . j]? Use suffix link as the failure transition!

Pissis Suffix Tree Applications

Application 5: Matching statistics

PREPROCESS: text T
QUERY: a text S ; return the longest prefix of S [i . .] that is a
substring of T , for all i ∈ [0, |S | − 1]

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

This takes us at node u: Su = S [i + 1 . . j].

Repeat from here!

Pissis Suffix Tree Applications

Application 5: Matching statistics

PREPROCESS: text T
QUERY: a text S ; return the longest prefix of S [i . .] that is a
substring of T , for all i ∈ [0, |S | − 1]

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

This takes us at node u: Su = S [i + 1 . . j]. Repeat from here!

Pissis Suffix Tree Applications

Application 5: Matching statistics

PREPROCESS: text T
QUERY: a text S ; return the longest prefix of S [i . .] that is a
substring of T , for all i ∈ [0, |S | − 1]

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Theorem
Matching statistics of S with respect to T can be computed in
O(|S |) time after O(n) time preprocessing.

Pissis Suffix Tree Applications

Application 6: Longest common prefix

PREPROCESS: text T
QUERY: a pair (i , j); return the longest common prefix of T [i . .]
and T [j . .]

The lowest common ancestor (LCA) of two nodes u and v is the
deepest node that is an ancestor of both u and v .

u

v

Theorem (Bender and Farach-Colton, LATIN 2000)

Any tree of size O(N) can be preprocessed in O(N) time so that
the LCA of any two nodes can be computed in O(1) time.

Pissis Suffix Tree Applications

Application 6: Longest common prefix

PREPROCESS: text T
QUERY: a pair (i , j); return the longest common prefix of T [i . .]
and T [j . .]
The lowest common ancestor (LCA) of two nodes u and v is the
deepest node that is an ancestor of both u and v .

u

v

Theorem (Bender and Farach-Colton, LATIN 2000)

Any tree of size O(N) can be preprocessed in O(N) time so that
the LCA of any two nodes can be computed in O(1) time.

Pissis Suffix Tree Applications

Application 6: Longest common prefix

PREPROCESS: text T
QUERY: a pair (i , j); return the longest common prefix of T [i . .]
and T [j . .]
The lowest common ancestor (LCA) of two nodes u and v is the
deepest node that is an ancestor of both u and v .

u

v

Theorem (Bender and Farach-Colton, LATIN 2000)

Any tree of size O(N) can be preprocessed in O(N) time so that
the LCA of any two nodes can be computed in O(1) time.

Pissis Suffix Tree Applications

Application 6: Longest common prefix

PREPROCESS: text T
QUERY: a pair (i , j); return the longest common prefix of T [i . .]
and T [j . .]

Example

Let T = CAGAGA$. Let (1, 5) be the query. The answer is A.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Theorem
Longest common prefix queries can be answered in O(1) time after
O(n) time preprocessing.

Pissis Suffix Tree Applications

Application 6: Longest common prefix

PREPROCESS: text T
QUERY: a pair (i , j); return the longest common prefix of T [i . .]
and T [j . .]

Example

Let T = CAGAGA$. Let (1, 5) be the query. The answer is A.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Theorem
Longest common prefix queries can be answered in O(1) time after
O(n) time preprocessing.

Pissis Suffix Tree Applications

Application 6: Longest common prefix

PREPROCESS: text T
QUERY: a pair (i , j); return the longest common prefix of T [i . .]
and T [j . .]

Example

Let T = CAGAGA$. Let (1, 5) be the query. The answer is A.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Theorem
Longest common prefix queries can be answered in O(1) time after
O(n) time preprocessing.

Pissis Suffix Tree Applications

Application 7: Longest palindromic substring

INPUT: text T
OUTPUT: a longest palindromic substring of T

Palindrome: S = ATTA = SR = ATTA.

I Construct the suffix tree of T#TR$.

I Preprocess the suffix tree for LCA queries.

I Say we are interested in odd-length palindromes.

I Answer LCA queries for Ti and TR
n−i , for all i .

Ti

TR
n−i

Pissis Suffix Tree Applications

Application 7: Longest palindromic substring

INPUT: text T
OUTPUT: a longest palindromic substring of T
Palindrome: S = ATTA = SR = ATTA.

I Construct the suffix tree of T#TR$.

I Preprocess the suffix tree for LCA queries.

I Say we are interested in odd-length palindromes.

I Answer LCA queries for Ti and TR
n−i , for all i .

Ti

TR
n−i

Pissis Suffix Tree Applications

Application 7: Longest palindromic substring

INPUT: text T
OUTPUT: a longest palindromic substring of T
Palindrome: S = ATTA = SR = ATTA.

I Construct the suffix tree of T#TR$.

I Preprocess the suffix tree for LCA queries.

I Say we are interested in odd-length palindromes.

I Answer LCA queries for Ti and TR
n−i , for all i .

Ti

TR
n−i

Pissis Suffix Tree Applications

Application 7: Longest palindromic substring

INPUT: text T
OUTPUT: a longest palindromic substring of T
Palindrome: S = ATTA = SR = ATTA.

I Construct the suffix tree of T#TR$.

I Preprocess the suffix tree for LCA queries.

I Say we are interested in odd-length palindromes.

I Answer LCA queries for Ti and TR
n−i , for all i .

Ti

TR
n−i

Pissis Suffix Tree Applications

Application 7: Longest palindromic substring

INPUT: text T
OUTPUT: a longest palindromic substring of T
Palindrome: S = ATTA = SR = ATTA.

I Construct the suffix tree of T#TR$.

I Preprocess the suffix tree for LCA queries.

I Say we are interested in odd-length palindromes.

I Answer LCA queries for Ti and TR
n−i , for all i .

Ti

TR
n−i

Pissis Suffix Tree Applications

Application 7: Longest palindromic substring

INPUT: text T
OUTPUT: a longest palindromic substring of T
Palindrome: S = ATTA = SR = ATTA.

I Construct the suffix tree of T#TR$.

I Preprocess the suffix tree for LCA queries.

I Say we are interested in odd-length palindromes.

I Answer LCA queries for Ti and TR
n−i , for all i .

Ti

TR
n−i

Pissis Suffix Tree Applications

Application 7: Longest palindromic substring

INPUT: text T
OUTPUT: a longest palindromic substring of T
Palindrome: S = ATTA = SR = ATTA.

I Construct the suffix tree of T#TR$.

I Preprocess the suffix tree for LCA queries.

I Say we are interested in odd-length palindromes.

I Answer LCA queries for Ti and TR
n−i , for all i .

Ti

TR
n−i

Pissis Suffix Tree Applications

Application 7: Longest palindromic substring

INPUT: text T
OUTPUT: a longest palindromic substring of T

Ti

TR
n−i

I A deepest LCA represents the longest odd-length palindrome.
I Even-length palindromes are handled analogously.
I Take the longer of the two as the answer.

Theorem
A longest palindromic substring can be computed in O(n) time.

Pissis Suffix Tree Applications

Application 7: Longest palindromic substring

INPUT: text T
OUTPUT: a longest palindromic substring of T

Ti

TR
n−i

I A deepest LCA represents the longest odd-length palindrome.

I Even-length palindromes are handled analogously.
I Take the longer of the two as the answer.

Theorem
A longest palindromic substring can be computed in O(n) time.

Pissis Suffix Tree Applications

Application 7: Longest palindromic substring

INPUT: text T
OUTPUT: a longest palindromic substring of T

Ti

TR
n−i

I A deepest LCA represents the longest odd-length palindrome.
I Even-length palindromes are handled analogously.

I Take the longer of the two as the answer.

Theorem
A longest palindromic substring can be computed in O(n) time.

Pissis Suffix Tree Applications

Application 7: Longest palindromic substring

INPUT: text T
OUTPUT: a longest palindromic substring of T

Ti

TR
n−i

I A deepest LCA represents the longest odd-length palindrome.
I Even-length palindromes are handled analogously.
I Take the longer of the two as the answer.

Theorem
A longest palindromic substring can be computed in O(n) time.

Pissis Suffix Tree Applications

Application 7: Longest palindromic substring

INPUT: text T
OUTPUT: a longest palindromic substring of T

Ti

TR
n−i

I A deepest LCA represents the longest odd-length palindrome.
I Even-length palindromes are handled analogously.
I Take the longer of the two as the answer.

Theorem
A longest palindromic substring can be computed in O(n) time.

Pissis Suffix Tree Applications

Application 8: Approximate string matching

INPUT: text T , a pattern P, and an integer k > 0
OUTPUT: all positions i in T : dH(T [i + |P| − 1],P) ≤ k

Hamming distance dH : dH(GCTA, GCAA) = 1; dH(GCTA, ACAA) = 2.

I Construct the suffix tree of P#T$.

I Answer LCA query for Ti and P, for i = 0.

I Say this gives an LCP of length `1.

Ti

P

`1

Pissis Suffix Tree Applications

Application 8: Approximate string matching

INPUT: text T , a pattern P, and an integer k > 0
OUTPUT: all positions i in T : dH(T [i + |P| − 1],P) ≤ k
Hamming distance dH : dH(GCTA, GCAA) = 1; dH(GCTA, ACAA) = 2.

I Construct the suffix tree of P#T$.

I Answer LCA query for Ti and P, for i = 0.

I Say this gives an LCP of length `1.

Ti

P

`1

Pissis Suffix Tree Applications

Application 8: Approximate string matching

INPUT: text T , a pattern P, and an integer k > 0
OUTPUT: all positions i in T : dH(T [i + |P| − 1],P) ≤ k
Hamming distance dH : dH(GCTA, GCAA) = 1; dH(GCTA, ACAA) = 2.

I Construct the suffix tree of P#T$.

I Answer LCA query for Ti and P, for i = 0.

I Say this gives an LCP of length `1.

Ti

P

`1

Pissis Suffix Tree Applications

Application 8: Approximate string matching

INPUT: text T , a pattern P, and an integer k > 0
OUTPUT: all positions i in T : dH(T [i + |P| − 1],P) ≤ k
Hamming distance dH : dH(GCTA, GCAA) = 1; dH(GCTA, ACAA) = 2.

I Construct the suffix tree of P#T$.

I Answer LCA query for Ti and P, for i = 0.

I Say this gives an LCP of length `1.

Ti

P

`1

Pissis Suffix Tree Applications

Application 8: Approximate string matching

INPUT: text T , a pattern P, and an integer k > 0
OUTPUT: all positions i in T : dH(T [i + |P| − 1],P) ≤ k
Hamming distance dH : dH(GCTA, GCAA) = 1; dH(GCTA, ACAA) = 2.

I Construct the suffix tree of P#T$.

I Answer LCA query for Ti and P, for i = 0.

I Say this gives an LCP of length `1.

Ti

P

`1

Pissis Suffix Tree Applications

Application 8: Approximate string matching

INPUT: text T , a pattern P, and an integer k > 0
OUTPUT: all positions i in T : dH(T [i + |P| − 1],P) ≤ k
Hamming distance dH : dH(GCTA, GCAA) = 1; dH(GCTA, ACAA) = 2.

I Construct the suffix tree of P#T$.

I Answer LCA query for Ti and P, for i = 0.

I Say this gives an LCP of length `1.

Ti

P

`1

Pissis Suffix Tree Applications

Application 8: Approximate string matching

INPUT: text T , a pattern P, and an integer k > 0
OUTPUT: all positions i in T : dH(T [i + |P| − 1],P) ≤ k

I “Jump” over the mismatch T [i + `1] 6= P[`1].

I Via answering the LCA query for Ti+`1+1 and P`1+1.

I This gives an LCP of length `2.

Ti+`1+1

P`1+1

`2

Pissis Suffix Tree Applications

Application 8: Approximate string matching

INPUT: text T , a pattern P, and an integer k > 0
OUTPUT: all positions i in T : dH(T [i + |P| − 1],P) ≤ k

I “Jump” over the mismatch T [i + `1] 6= P[`1].

I Via answering the LCA query for Ti+`1+1 and P`1+1.

I This gives an LCP of length `2.

Ti+`1+1

P`1+1

`2

Pissis Suffix Tree Applications

Application 8: Approximate string matching

INPUT: text T , a pattern P, and an integer k > 0
OUTPUT: all positions i in T : dH(T [i + |P| − 1],P) ≤ k

I “Jump” over the mismatch T [i + `1] 6= P[`1].

I Via answering the LCA query for Ti+`1+1 and P`1+1.

I This gives an LCP of length `2.

Ti+`1+1

P`1+1

`2

Pissis Suffix Tree Applications

Application 8: Approximate string matching

INPUT: text T , a pattern P, and an integer k > 0
OUTPUT: all positions i in T : dH(T [i + |P| − 1],P) ≤ k

I “Jump” over the mismatch T [i + `1] 6= P[`1].

I Via answering the LCA query for Ti+`1+1 and P`1+1.

I This gives an LCP of length `2.

Ti+`1+1

P`1+1

`2

Pissis Suffix Tree Applications

Application 8: Approximate string matching

INPUT: text T , a pattern P, and an integer k > 0
OUTPUT: all positions i in T : dH(T [i + |P| − 1],P) ≤ k

I “Jump” over the mismatch T [i + `1] 6= P[`1].

I Via answering the LCA query for Ti+`1+1 and P`1+1.

I This gives an LCP of length `2.

Ti+`1+1

P`1+1

`2

Pissis Suffix Tree Applications

Application 8: Approximate string matching

INPUT: text T , a pattern P, and an integer k > 0
OUTPUT: all positions i in T : dH(T [i + |P| − 1],P) ≤ k

Ti+`1+1

P`1+1

`2

I Answer (at most) k + 1 queries per i .

I Report i if the total length `1 + 1 + `2 + 1 + · · · is at least |P|.
I Repeat for all i ∈ [1, n].

Theorem (Landau and Vishkin, TCS 1986)

Approximate string matching can be solved in O(kn) time.

Pissis Suffix Tree Applications

Application 8: Approximate string matching

INPUT: text T , a pattern P, and an integer k > 0
OUTPUT: all positions i in T : dH(T [i + |P| − 1],P) ≤ k

Ti+`1+1

P`1+1

`2

I Answer (at most) k + 1 queries per i .

I Report i if the total length `1 + 1 + `2 + 1 + · · · is at least |P|.
I Repeat for all i ∈ [1, n].

Theorem (Landau and Vishkin, TCS 1986)

Approximate string matching can be solved in O(kn) time.

Pissis Suffix Tree Applications

Application 8: Approximate string matching

INPUT: text T , a pattern P, and an integer k > 0
OUTPUT: all positions i in T : dH(T [i + |P| − 1],P) ≤ k

Ti+`1+1

P`1+1

`2

I Answer (at most) k + 1 queries per i .

I Report i if the total length `1 + 1 + `2 + 1 + · · · is at least |P|.
I Repeat for all i ∈ [1, n].

Theorem (Landau and Vishkin, TCS 1986)

Approximate string matching can be solved in O(kn) time.

Pissis Suffix Tree Applications

Application 8: Approximate string matching

INPUT: text T , a pattern P, and an integer k > 0
OUTPUT: all positions i in T : dH(T [i + |P| − 1],P) ≤ k

Ti+`1+1

P`1+1

`2

I Answer (at most) k + 1 queries per i .

I Report i if the total length `1 + 1 + `2 + 1 + · · · is at least |P|.

I Repeat for all i ∈ [1, n].

Theorem (Landau and Vishkin, TCS 1986)

Approximate string matching can be solved in O(kn) time.

Pissis Suffix Tree Applications

Application 8: Approximate string matching

INPUT: text T , a pattern P, and an integer k > 0
OUTPUT: all positions i in T : dH(T [i + |P| − 1],P) ≤ k

Ti+`1+1

P`1+1

`2

I Answer (at most) k + 1 queries per i .

I Report i if the total length `1 + 1 + `2 + 1 + · · · is at least |P|.
I Repeat for all i ∈ [1, n].

Theorem (Landau and Vishkin, TCS 1986)

Approximate string matching can be solved in O(kn) time.

Pissis Suffix Tree Applications

Application 8: Approximate string matching

INPUT: text T , a pattern P, and an integer k > 0
OUTPUT: all positions i in T : dH(T [i + |P| − 1],P) ≤ k

Ti+`1+1

P`1+1

`2

I Answer (at most) k + 1 queries per i .

I Report i if the total length `1 + 1 + `2 + 1 + · · · is at least |P|.
I Repeat for all i ∈ [1, n].

Theorem (Landau and Vishkin, TCS 1986)

Approximate string matching can be solved in O(kn) time.

Pissis Suffix Tree Applications

Application 9: Lempel-Ziv factorization

INPUT: text T
OUTPUT: Lempel-Ziv factorization of T

LZ factorization of T :

I T = F0 · F1 · · ·Fk ;

I Each Fi is the longest prefix of Fi · · ·Fk with some occurrence
to the left;

I (or a single letter in case this prefix is empty.)

Example

Let T = abbaabbbaaabab. The LZ factorization of T is
a · b · b · a · abb · baa · ab · ab.

Why do we care? LZ factorization is a basic and powerful
technique for text compression (and string algorithms)!

Pissis Suffix Tree Applications

Application 9: Lempel-Ziv factorization

INPUT: text T
OUTPUT: Lempel-Ziv factorization of T
LZ factorization of T :

I T = F0 · F1 · · ·Fk ;

I Each Fi is the longest prefix of Fi · · ·Fk with some occurrence
to the left;

I (or a single letter in case this prefix is empty.)

Example

Let T = abbaabbbaaabab. The LZ factorization of T is
a · b · b · a · abb · baa · ab · ab.

Why do we care? LZ factorization is a basic and powerful
technique for text compression (and string algorithms)!

Pissis Suffix Tree Applications

Application 9: Lempel-Ziv factorization

INPUT: text T
OUTPUT: Lempel-Ziv factorization of T
LZ factorization of T :

I T = F0 · F1 · · ·Fk ;

I Each Fi is the longest prefix of Fi · · ·Fk with some occurrence
to the left;

I (or a single letter in case this prefix is empty.)

Example

Let T = abbaabbbaaabab. The LZ factorization of T is
a · b · b · a · abb · baa · ab · ab.

Why do we care? LZ factorization is a basic and powerful
technique for text compression (and string algorithms)!

Pissis Suffix Tree Applications

Application 9: Lempel-Ziv factorization

INPUT: text T
OUTPUT: Lempel-Ziv factorization of T
LZ factorization of T :

I T = F0 · F1 · · ·Fk ;

I Each Fi is the longest prefix of Fi · · ·Fk with some occurrence
to the left;

I (or a single letter in case this prefix is empty.)

Example

Let T = abbaabbbaaabab. The LZ factorization of T is
a · b · b · a · abb · baa · ab · ab.

Why do we care? LZ factorization is a basic and powerful
technique for text compression (and string algorithms)!

Pissis Suffix Tree Applications

Application 9: Lempel-Ziv factorization

INPUT: text T
OUTPUT: Lempel-Ziv factorization of T
LZ factorization of T :

I T = F0 · F1 · · ·Fk ;

I Each Fi is the longest prefix of Fi · · ·Fk with some occurrence
to the left;

I (or a single letter in case this prefix is empty.)

Example

Let T = abbaabbbaaabab. The LZ factorization of T is
a · b · b · a · abb · baa · ab · ab.

Why do we care? LZ factorization is a basic and powerful
technique for text compression (and string algorithms)!

Pissis Suffix Tree Applications

Application 9: Lempel-Ziv factorization

INPUT: text T
OUTPUT: Lempel-Ziv factorization of T
LZ factorization of T :

I T = F0 · F1 · · ·Fk ;

I Each Fi is the longest prefix of Fi · · ·Fk with some occurrence
to the left;

I (or a single letter in case this prefix is empty.)

Example

Let T = abbaabbbaaabab.

The LZ factorization of T is
a · b · b · a · abb · baa · ab · ab.

Why do we care? LZ factorization is a basic and powerful
technique for text compression (and string algorithms)!

Pissis Suffix Tree Applications

Application 9: Lempel-Ziv factorization

INPUT: text T
OUTPUT: Lempel-Ziv factorization of T
LZ factorization of T :

I T = F0 · F1 · · ·Fk ;

I Each Fi is the longest prefix of Fi · · ·Fk with some occurrence
to the left;

I (or a single letter in case this prefix is empty.)

Example

Let T = abbaabbbaaabab. The LZ factorization of T is
a · b · b · a · abb · baa · ab · ab.

Why do we care? LZ factorization is a basic and powerful
technique for text compression (and string algorithms)!

Pissis Suffix Tree Applications

Application 9: Lempel-Ziv factorization

INPUT: text T
OUTPUT: Lempel-Ziv factorization of T
LZ factorization of T :

I T = F0 · F1 · · ·Fk ;

I Each Fi is the longest prefix of Fi · · ·Fk with some occurrence
to the left;

I (or a single letter in case this prefix is empty.)

Example

Let T = abbaabbbaaabab. The LZ factorization of T is
a · b · b · a · abb · baa · ab · ab.

Why do we care?

LZ factorization is a basic and powerful
technique for text compression (and string algorithms)!

Pissis Suffix Tree Applications

Application 9: Lempel-Ziv factorization

INPUT: text T
OUTPUT: Lempel-Ziv factorization of T
LZ factorization of T :

I T = F0 · F1 · · ·Fk ;

I Each Fi is the longest prefix of Fi · · ·Fk with some occurrence
to the left;

I (or a single letter in case this prefix is empty.)

Example

Let T = abbaabbbaaabab. The LZ factorization of T is
a · b · b · a · abb · baa · ab · ab.

Why do we care? LZ factorization is a basic and powerful
technique for text compression (and string algorithms)!

Pissis Suffix Tree Applications

Application 9: Lempel-Ziv factorization

INPUT: text T
OUTPUT: Lempel-Ziv factorization of T

I Construct the suffix tree of T .

I Decorate each internal node with the leftmost starting
position the string it represents occurs.

I How? Use a depth-first traversal and propagate the starting
positions upwards.

I Run the matching statistics algorithm for T with respect to T .

I For each longest match check the leftmost starting position.

Theorem
LZ factorization can be computed in O(n) time.

Pissis Suffix Tree Applications

Application 9: Lempel-Ziv factorization

INPUT: text T
OUTPUT: Lempel-Ziv factorization of T

I Construct the suffix tree of T .

I Decorate each internal node with the leftmost starting
position the string it represents occurs.

I How? Use a depth-first traversal and propagate the starting
positions upwards.

I Run the matching statistics algorithm for T with respect to T .

I For each longest match check the leftmost starting position.

Theorem
LZ factorization can be computed in O(n) time.

Pissis Suffix Tree Applications

Application 9: Lempel-Ziv factorization

INPUT: text T
OUTPUT: Lempel-Ziv factorization of T

I Construct the suffix tree of T .

I Decorate each internal node with the leftmost starting
position the string it represents occurs.

I How? Use a depth-first traversal and propagate the starting
positions upwards.

I Run the matching statistics algorithm for T with respect to T .

I For each longest match check the leftmost starting position.

Theorem
LZ factorization can be computed in O(n) time.

Pissis Suffix Tree Applications

Application 9: Lempel-Ziv factorization

INPUT: text T
OUTPUT: Lempel-Ziv factorization of T

I Construct the suffix tree of T .

I Decorate each internal node with the leftmost starting
position the string it represents occurs.

I How?

Use a depth-first traversal and propagate the starting
positions upwards.

I Run the matching statistics algorithm for T with respect to T .

I For each longest match check the leftmost starting position.

Theorem
LZ factorization can be computed in O(n) time.

Pissis Suffix Tree Applications

Application 9: Lempel-Ziv factorization

INPUT: text T
OUTPUT: Lempel-Ziv factorization of T

I Construct the suffix tree of T .

I Decorate each internal node with the leftmost starting
position the string it represents occurs.

I How? Use a depth-first traversal and propagate the starting
positions upwards.

I Run the matching statistics algorithm for T with respect to T .

I For each longest match check the leftmost starting position.

Theorem
LZ factorization can be computed in O(n) time.

Pissis Suffix Tree Applications

Application 9: Lempel-Ziv factorization

INPUT: text T
OUTPUT: Lempel-Ziv factorization of T

I Construct the suffix tree of T .

I Decorate each internal node with the leftmost starting
position the string it represents occurs.

I How? Use a depth-first traversal and propagate the starting
positions upwards.

I Run the matching statistics algorithm for T with respect to T .

I For each longest match check the leftmost starting position.

Theorem
LZ factorization can be computed in O(n) time.

Pissis Suffix Tree Applications

Application 9: Lempel-Ziv factorization

INPUT: text T
OUTPUT: Lempel-Ziv factorization of T

I Construct the suffix tree of T .

I Decorate each internal node with the leftmost starting
position the string it represents occurs.

I How? Use a depth-first traversal and propagate the starting
positions upwards.

I Run the matching statistics algorithm for T with respect to T .

I For each longest match check the leftmost starting position.

Theorem
LZ factorization can be computed in O(n) time.

Pissis Suffix Tree Applications

Application 9: Lempel-Ziv factorization

INPUT: text T
OUTPUT: Lempel-Ziv factorization of T

I Construct the suffix tree of T .

I Decorate each internal node with the leftmost starting
position the string it represents occurs.

I How? Use a depth-first traversal and propagate the starting
positions upwards.

I Run the matching statistics algorithm for T with respect to T .

I For each longest match check the leftmost starting position.

Theorem
LZ factorization can be computed in O(n) time.

Pissis Suffix Tree Applications

Application 10: Shortest unique substring

INPUT: text T
OUTPUT: a shortest unique substring of T

I Construct the suffix tree of T .
I For each leaf node labeled i , for all i ∈ [0, n], pick up the

closest ancestor v using a depth-first traversal.

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Application 10: Shortest unique substring

INPUT: text T
OUTPUT: a shortest unique substring of T

I Construct the suffix tree of T .

I For each leaf node labeled i , for all i ∈ [0, n], pick up the
closest ancestor v using a depth-first traversal.

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Application 10: Shortest unique substring

INPUT: text T
OUTPUT: a shortest unique substring of T

I Construct the suffix tree of T .
I For each leaf node labeled i , for all i ∈ [0, n], pick up the

closest ancestor v using a depth-first traversal.

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Application 10: Shortest unique substring

INPUT: text T
OUTPUT: a shortest unique substring of T

I Construct the suffix tree of T .
I For each leaf node labeled i , for all i ∈ [0, n], pick up the

closest ancestor v using a depth-first traversal.

Example

Let T = CAGAGA$.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Application 10: Shortest unique substring

INPUT: text T
OUTPUT: a shortest unique substring of T

I The substring represented by v concatenated with the
succeeding letter is the shortest unique substring starting at i .

Example

Let T = CAGAGA$. The shortest unique substring starting at 1 is
AGAG.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Application 10: Shortest unique substring

INPUT: text T
OUTPUT: a shortest unique substring of T

I The substring represented by v concatenated with the
succeeding letter is the shortest unique substring starting at i .

Example

Let T = CAGAGA$. The shortest unique substring starting at 1 is
AGAG.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Application 10: Shortest unique substring

INPUT: text T
OUTPUT: a shortest unique substring of T

I The substring represented by v concatenated with the
succeeding letter is the shortest unique substring starting at i .

Example

Let T = CAGAGA$. The shortest unique substring starting at 1 is
AGAG.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Pissis Suffix Tree Applications

Application 10: Shortest unique substring

INPUT: text T
OUTPUT: a shortest unique substring of T

I Take a shortest substring among all i .

Example

Let T = CAGAGA$. The shortest unique substring is C.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Theorem
A shortest unique substring can be computed in O(n) time.

Pissis Suffix Tree Applications

Application 10: Shortest unique substring

INPUT: text T
OUTPUT: a shortest unique substring of T

I Take a shortest substring among all i .

Example

Let T = CAGAGA$. The shortest unique substring is C.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Theorem
A shortest unique substring can be computed in O(n) time.

Pissis Suffix Tree Applications

Application 10: Shortest unique substring

INPUT: text T
OUTPUT: a shortest unique substring of T

I Take a shortest substring among all i .

Example

Let T = CAGAGA$. The shortest unique substring is C.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Theorem
A shortest unique substring can be computed in O(n) time.

Pissis Suffix Tree Applications

Application 10: Shortest unique substring

INPUT: text T
OUTPUT: a shortest unique substring of T

I Take a shortest substring among all i .

Example

Let T = CAGAGA$. The shortest unique substring is C.

$

GA

A$

$

GA$

GA

CAGAGA$

GA$

$

0

1

3

5

6

4

2

Theorem
A shortest unique substring can be computed in O(n) time.

Pissis Suffix Tree Applications

Take-home message

I Suffix tree is a fundamental data structure for processing any
type of sequential data.

I It provides fast implementations of many important string
operations.

I Practice? Suffix arrays enhanced with some extra information.

Thanks!

Pissis Suffix Tree Applications

Take-home message

I Suffix tree is a fundamental data structure for processing any
type of sequential data.

I It provides fast implementations of many important string
operations.

I Practice? Suffix arrays enhanced with some extra information.

Thanks!

Pissis Suffix Tree Applications

Take-home message

I Suffix tree is a fundamental data structure for processing any
type of sequential data.

I It provides fast implementations of many important string
operations.

I Practice? Suffix arrays enhanced with some extra information.

Thanks!

Pissis Suffix Tree Applications

Take-home message

I Suffix tree is a fundamental data structure for processing any
type of sequential data.

I It provides fast implementations of many important string
operations.

I Practice?

Suffix arrays enhanced with some extra information.

Thanks!

Pissis Suffix Tree Applications

Take-home message

I Suffix tree is a fundamental data structure for processing any
type of sequential data.

I It provides fast implementations of many important string
operations.

I Practice? Suffix arrays enhanced with some extra information.

Thanks!

Pissis Suffix Tree Applications

Take-home message

I Suffix tree is a fundamental data structure for processing any
type of sequential data.

I It provides fast implementations of many important string
operations.

I Practice? Suffix arrays enhanced with some extra information.

Thanks!

Pissis Suffix Tree Applications

