

A Study of All Recognized Bacterial Phyla Using Network Science and Whole Proteome Clustering

Ehdieh Khaledian

Assefaw H. Gebremedhin, Kelly A. Brayton, and

Shira L. Broschat

Oct 28, 2018

StringBio 2018

Introduction

- Organisms diversify through the process of evolution
- Biologists are interested in reconstructing the evolutionary path
- We are interested in the relationships of bacteria
- Goal: extract the information from network of Organisms and network of phyla

Approach

- Look at whole genome sequences
 - Old approach: A few genes
 - New approach: Entire genomes
 - Horizontal gene transfer
- Look at the network of organisms instead of tree

What enables us ...

- Availability of whole genome sequences
 - > 7000 genomes
- Next Generation
 Sequencing
- Clustering using pClust software

Dataset

11/15/18

- 210 complete genome sequences
- 733,227 protein sequences
- 29 major recognized phyla
 - 28 available at time of study
- Overrepresentation of Proteobacteria
 - We separated this phylum into classes
- Operational taxonomic units (OTUs, **31** groups)
 - Bacteroidetes/Chlorobi grouped by NCBI

5

Clustering

- pClust for clustering:
 - Semi-global alignment
 - Louvain community detection
- 61,057 non-singleton clusters
- Exclude Singletons

Creating Networks

- Bipartite graph of the organism-cluster relationship:
- Compute Manhattan distance and normalize

$$d(p,q) = ||p - q|| = \sum_{i=1}^{n} |p_i - q_i|$$

Creating Networks

- Create Network of Phyla from Network of Organisms using average distance
- Apply BFS to extract the Tree of Phyla

Heatmap

Minimum gene set

Number of	Proteins
Sequences in	
Cluster	
400	30S ribosomal protein S13
413	30S ribosomal protein S3
402	30S ribosomal protein S5
403	30S ribosomal protein S7
403	30S ribosomal protein S8
400	30S ribosomal protein S9
409	30S ribosomal subunit protein S4
400	50S ribosomal protein L14
399	50S ribosomal protein L16
399	50S ribosomal protein L17
442	50S ribosomal protein L2
	putative dihydrodipicolinate synthase
402	50S ribosomal protein L20
400	50S ribosomal protein L5
402	50S ribosomal protein L6
510	DNA gyrase, subunit A
	DNA topoisomerase IV
694	DNA gyrase, subunit B
	DNA gyrase subunit B, type II topoisomerase
	topoisomerase IV subunit B
531	GTP-binding protein chain elongation factor EF-G
	translation elongation factor 2 (EF-2/EF-G)
778	peptide chain release factor RF-1,
	peptide chain release factor RF-2
596	protein chain elongation factor EF-Tu
410	seryl-tRNA synthetase

Network of Bacterial Phyla

Tree of Bacterial Phyla

Centrality Analysis for Network of **OTUs** Aquificae Deferribacteres Svnerzistia Elusimicrobia Zetaproteobacteria Thermodesulfobacteria Planctomycetes Nitrospira Dictyoglomia Gemmatimonadetes Tenencutes Acidoba teniia **Caldisericia**

Gammaproteobacteria Armatimonadetes Betaproteobacteri Thermotogae ctinobacteri Alphaproteobacteria Fibrobacteres Cyanobacteria Melainabacteriagroup Chrysingenetes delta.epsilonsubdivisions Fusobacteriia Bacteroidetes.Chlorobigroup Spirochaetia Chlamydia Deinococcus. Thermus Verrucomicrobia Chloroflexi

Conclusion

- Centrality measures show:
 - Most important organism is **B. aphidicola**
 - Endosymbiont belonging to Gammaproteobacteria
 - Small genome (< 1 Mb) with a low G+C content
 - Reduced genome
 - Relatively conserved genes/proteins

Conclusions (cont.)

- Application of breadth-first search (BFS) gives:
 - Oldest OTUs
 - Betaproteobacteria
 - Gammaproteobacteria
 - Proteobacteria as the oldest phylum

Thank you

