Enabling Java string-bioinformatics
libraries in Kawa Scheme

Mark E. Royer and Sudarshan S. Chawathe

Department of Computer Science
School of Computing and Information Science, University of Maine



Motivation

Technique

Annotation Tooling
Kawa-Scheme Annotations
Kawa-Scheme Programming

Conclusion

1/18



Motivation



Java string-bioinformatics libraries and Kawa Scheme

= Integration of a well-established JVM implementation of

Scheme, viz. Kawa
= Cater to existing Java libraries (particularly bioinformatics)

= Java libraries are decorated with special annotations to
indicate they should be used in the Kawa environment

= Annotated Java functions are presented in a natural way in

the Kawa Scheme environment

2/18



The Java Programming Environment

= Java is a mature and robust programming environment

Tools and libraries for use in bioinformatics

= Particular libraries of string-bioinformatics algorithms
= Java-based tools provide
= Strong typing
= Portability
= The Java Virtual Machine features (garbage collection, etc.)

3/18



Java Environment Prototyping

= Java is not convenient for prototyping
= [nteractive development is new

= REPL (Read-Evaluate-Print-Loop)
just recently added in Java 9

= The new jshell for Open JDK 11 is Very good!

4/18



The Scheme Programming Language

Subset of the Lisp programming language
= Runs on the JVM via Kawa
= Convenient for rapid prototyping

= Scheme is an attractive choice because

= Well-studied and mature language
= Enables programming in diverse styles — in particular
functional-style programming

5/18



Technique



= Java string-bioinformatics libraries are decorated with a
special annotation that indicates they are to be made
available in Kawa

= Annotations in Java are simply tags containing meta-data
that begin with the @ symbol

6/18



Javadoc Extraction

= At compile time, descriptive information is extracted from the
source code and stored in XML files

= XML files are bundled with other artifacts within jar files

= Function descriptive information is extracted from the
accompanying Javadoc

= Annotation syntax allows supplying alternative documentation

= Documentation is made available to the Kawa REPL

7/18



Functional Designation

= Deterministic
= Value returned by a function depends only on the values of its
argument
= The result cannot depend on any state
= May not depend on any external input from |/O devices

= Side-effect free

= Execution does not cause any observable side effect or output

= side-effect-free function must not mutate objects or output to
[/O devices.

8/18



Modification of Existing Libraries

= Existing Java string-bioinformatics libraries

= Directly modified by adorning functions with annotations
= Indirectly supported by wrapping them with the introduction
of a language-bridge library

9/18



Annotation Tooling




Annotation Processor Interface

= The Processor class provides a mechanism to process

annotated classes
= Most implementations extends the AbstractProcessor class
= Processing takes place using a sequence of rounds

= The user defined processor is specified using the
@AutoService(Processor.class) annotation

10/18



Extracting and Storing Data in XML

= Data is stored in XML using the JAXB-API
= For example, Java comment objects are converted into XML

= A fully qualified XML file is created for every class that
contains @KawaFunction annotated methods

11/18



Annotation Discovery at Runtime

= |nitialization of the KawaServer includes searching the
annotation processor classpath for annotation XML files

= Function aliasing is performed on the discovered
@KawaFunction annotated methods

= By default, long packaging namespace prefix removed

= The newly created alias is available in the default namespace

kjava

12/18



Kawa-Scheme Annotations




Declaration of Annotation

1 |@Retention (RUNTIME)
2 |@Target (METHOD)
3 |public @interface KawaFunction { /x ... %/ }

1. @Retention specifies the annotation is available at runtime

2. The @Target indicates that this annotation may only be used
with Java methods

13/18



©KawaFunction Annotation Expanded

1 |public @interface KawaFunction {

2

3 String namespace() default "kjava";

4

5 /* Grabs the surrounding Javadoc by default */
6 String description() default "";

7

8 /* Returns the same result given the

9 same argument value(s). x/

10 boolean deterministic() default false;

11

12 /* No semantically observable side effect or output */
13 boolean sideEffectFree() default false;

14 |}

4/18



Kawa-Scheme Programming




Kawa Telnet Server

= Create on the Java side when application initializes

= Use the KawaServer class to initialize a Kawa telnet server in

a separate Java thread.

= Care must be taken to ensure that client model modification

does not interfere with native Java library states.

15/18



Kawa Client Connection

= REPL created from telnet connection (default port 5146)
= rlwrap program provides typical shell experience

= Emacs is excellent for Scheme programming

16/18



Conclusion




= Test with a broader set of string-bioinformatics libraries

= Expand on the type interaction of the two language
environments

= Support function preconditions and postconditions
= Investigate functional, multi-threaded applications

17/18



= Java libraries decorated with annotations

= Library provides natural functional-style programming
environment

= Provide Kawa Scheme integration with existing Java
string-bioinformatics libraries

18/18



	Motivation
	Technique
	Annotation Tooling
	Kawa-Scheme Annotations
	Kawa-Scheme Programming
	Conclusion

