
Enabling Java string-bioinformatics
libraries in Kawa Scheme

Mark E. Royer and Sudarshan S. Chawathe

Department of Computer Science
School of Computing and Information Science, University of Maine



Outline

Motivation

Technique

Annotation Tooling

Kawa-Scheme Annotations

Kawa-Scheme Programming

Conclusion

1/18



Motivation



Java string-bioinformatics libraries and Kawa Scheme

• Integration of a well-established JVM implementation of
Scheme, viz. Kawa

• Cater to existing Java libraries (particularly bioinformatics)
• Java libraries are decorated with special annotations to

indicate they should be used in the Kawa environment
• Annotated Java functions are presented in a natural way in

the Kawa Scheme environment

2/18



The Java Programming Environment

• Java is a mature and robust programming environment
• Tools and libraries for use in bioinformatics
• Particular libraries of string-bioinformatics algorithms
• Java-based tools provide

• Strong typing
• Portability
• The Java Virtual Machine features (garbage collection, etc.)

3/18



Java Environment Prototyping

• Java is not convenient for prototyping
• Interactive development is new
• REPL (Read-Evaluate-Print-Loop)

just recently added in Java 9
• The new jshell for Open JDK 11 is Very good!

4/18



The Scheme Programming Language

• Subset of the Lisp programming language
• Runs on the JVM via Kawa
• Convenient for rapid prototyping
• Scheme is an attractive choice because

• Well-studied and mature language
• Enables programming in diverse styles – in particular

functional-style programming

5/18



Technique



Annotations

• Java string-bioinformatics libraries are decorated with a
special annotation that indicates they are to be made
available in Kawa

• Annotations in Java are simply tags containing meta-data
that begin with the @ symbol

6/18



Javadoc Extraction

• At compile time, descriptive information is extracted from the
source code and stored in XML files

• XML files are bundled with other artifacts within jar files
• Function descriptive information is extracted from the

accompanying Javadoc
• Annotation syntax allows supplying alternative documentation
• Documentation is made available to the Kawa REPL

7/18



Functional Designation

• Deterministic
• Value returned by a function depends only on the values of its

argument
• The result cannot depend on any state
• May not depend on any external input from I/O devices

• Side-effect free
• Execution does not cause any observable side effect or output
• side-effect-free function must not mutate objects or output to

I/O devices.

8/18



Modification of Existing Libraries

• Existing Java string-bioinformatics libraries
• Directly modified by adorning functions with annotations
• Indirectly supported by wrapping them with the introduction

of a language-bridge library

9/18



Annotation Tooling



Annotation Processor Interface

• The Processor class provides a mechanism to process
annotated classes

• Most implementations extends the AbstractProcessor class
• Processing takes place using a sequence of rounds
• The user defined processor is specified using the

@AutoService(Processor.class) annotation

10/18



Extracting and Storing Data in XML

• Data is stored in XML using the JAXB-API

• For example, Java comment objects are converted into XML

• A fully qualified XML file is created for every class that
contains @KawaFunction annotated methods

11/18



Annotation Discovery at Runtime

• Initialization of the KawaServer includes searching the
annotation processor classpath for annotation XML files

• Function aliasing is performed on the discovered
@KawaFunction annotated methods

• By default, long packaging namespace prefix removed
• The newly created alias is available in the default namespace

kjava

12/18



Kawa-Scheme Annotations



Declaration of Annotation

1 @Retention(RUNTIME)

2 @Target(METHOD)

3 public @interface KawaFunction { /* ... */ }

1. @Retention specifies the annotation is available at runtime
2. The @Target indicates that this annotation may only be used

with Java methods

13/18



@KawaFunction Annotation Expanded

1 public @interface KawaFunction {

2

3 String namespace() default "kjava";

4

5 /* Grabs the surrounding Javadoc by default */

6 String description() default "";

7

8 /* Returns the same result given the

9 same argument value(s). */

10 boolean deterministic() default false;

11

12 /* No semantically observable side effect or output */

13 boolean sideEffectFree() default false;

14 }
14/18



Kawa-Scheme Programming



Kawa Telnet Server

• Create on the Java side when application initializes
• Use the KawaServer class to initialize a Kawa telnet server in

a separate Java thread.
• Care must be taken to ensure that client model modification

does not interfere with native Java library states.

15/18



Kawa Client Connection

• REPL created from telnet connection (default port 5146)
• rlwrap program provides typical shell experience
• Emacs is excellent for Scheme programming

16/18



Conclusion



Future Work

• Test with a broader set of string-bioinformatics libraries
• Expand on the type interaction of the two language

environments
• Support function preconditions and postconditions
• Investigate functional, multi-threaded applications

17/18



Summary

• Java libraries decorated with annotations
• Library provides natural functional-style programming

environment
• Provide Kawa Scheme integration with existing Java

string-bioinformatics libraries

18/18


	Motivation
	Technique
	Annotation Tooling
	Kawa-Scheme Annotations
	Kawa-Scheme Programming
	Conclusion

