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Motivation



Java string-bioinformatics libraries and Kawa Scheme

• Integration of a well-established JVM implementation of
Scheme, viz. Kawa

• Cater to existing Java libraries (particularly bioinformatics)
• Java libraries are decorated with special annotations to

indicate they should be used in the Kawa environment
• Annotated Java functions are presented in a natural way in

the Kawa Scheme environment
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The Java Programming Environment

• Java is a mature and robust programming environment
• Tools and libraries for use in bioinformatics
• Particular libraries of string-bioinformatics algorithms
• Java-based tools provide

• Strong typing
• Portability
• The Java Virtual Machine features (garbage collection, etc.)
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Java Environment Prototyping

• Java is not convenient for prototyping
• Interactive development is new
• REPL (Read-Evaluate-Print-Loop)

just recently added in Java 9
• The new jshell for Open JDK 11 is Very good!
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The Scheme Programming Language

• Subset of the Lisp programming language
• Runs on the JVM via Kawa
• Convenient for rapid prototyping
• Scheme is an attractive choice because

• Well-studied and mature language
• Enables programming in diverse styles – in particular

functional-style programming
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Technique



Annotations

• Java string-bioinformatics libraries are decorated with a
special annotation that indicates they are to be made
available in Kawa

• Annotations in Java are simply tags containing meta-data
that begin with the @ symbol
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Javadoc Extraction

• At compile time, descriptive information is extracted from the
source code and stored in XML files

• XML files are bundled with other artifacts within jar files
• Function descriptive information is extracted from the

accompanying Javadoc
• Annotation syntax allows supplying alternative documentation
• Documentation is made available to the Kawa REPL
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Functional Designation

• Deterministic
• Value returned by a function depends only on the values of its

argument
• The result cannot depend on any state
• May not depend on any external input from I/O devices

• Side-effect free
• Execution does not cause any observable side effect or output
• side-effect-free function must not mutate objects or output to

I/O devices.
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Modification of Existing Libraries

• Existing Java string-bioinformatics libraries
• Directly modified by adorning functions with annotations
• Indirectly supported by wrapping them with the introduction

of a language-bridge library
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Annotation Tooling



Annotation Processor Interface

• The Processor class provides a mechanism to process
annotated classes

• Most implementations extends the AbstractProcessor class
• Processing takes place using a sequence of rounds
• The user defined processor is specified using the

@AutoService(Processor.class) annotation
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Extracting and Storing Data in XML

• Data is stored in XML using the JAXB-API

• For example, Java comment objects are converted into XML

• A fully qualified XML file is created for every class that
contains @KawaFunction annotated methods
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Annotation Discovery at Runtime

• Initialization of the KawaServer includes searching the
annotation processor classpath for annotation XML files

• Function aliasing is performed on the discovered
@KawaFunction annotated methods

• By default, long packaging namespace prefix removed
• The newly created alias is available in the default namespace

kjava
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Kawa-Scheme Annotations



Declaration of Annotation

1 @Retention(RUNTIME)

2 @Target(METHOD)

3 public @interface KawaFunction { /* ... */ }

1. @Retention specifies the annotation is available at runtime
2. The @Target indicates that this annotation may only be used

with Java methods
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@KawaFunction Annotation Expanded

1 public @interface KawaFunction {

2

3 String namespace() default "kjava";

4

5 /* Grabs the surrounding Javadoc by default */

6 String description() default "";

7

8 /* Returns the same result given the

9 same argument value(s). */

10 boolean deterministic() default false;

11

12 /* No semantically observable side effect or output */

13 boolean sideEffectFree() default false;

14 }
14/18



Kawa-Scheme Programming



Kawa Telnet Server

• Create on the Java side when application initializes
• Use the KawaServer class to initialize a Kawa telnet server in

a separate Java thread.
• Care must be taken to ensure that client model modification

does not interfere with native Java library states.
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Kawa Client Connection

• REPL created from telnet connection (default port 5146)
• rlwrap program provides typical shell experience
• Emacs is excellent for Scheme programming
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Conclusion



Future Work

• Test with a broader set of string-bioinformatics libraries
• Expand on the type interaction of the two language

environments
• Support function preconditions and postconditions
• Investigate functional, multi-threaded applications
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Summary

• Java libraries decorated with annotations
• Library provides natural functional-style programming

environment
• Provide Kawa Scheme integration with existing Java

string-bioinformatics libraries
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