Georgia Institute for Data Tech Engineering and Science

LONG READ MAPPING AT SCALE: ALGORITHMS AND APPLICATIONS

SRINIVAS ALURU GEORGIA INSTITUTE OF TECHNOLOGY

DATA DELUGE IN GENOMICS

Georgia Institute for Data Tech Institute for Data

- Human genome project
 [1990 2003]
- First draft of the human genome published

- Broad Institute sequenced its
 100,000th human genome [April,
 2018]
- 663 Tera bp DNA per month: equivalent to sequencing a human genome every 6 minutes
- RefSeq reference genomes add to 1.3 Tera bp (July 13, 2018) and growing!

LONG READ DNA SEQUENCING

Georgia Institute for Data Tech Engineering and Science

Illumina NovaSeq

- 150-bp reads
- Error-rates ~0.1%

LONG READS

(since 2011)

MinION PromethION Oxford Nanopore Tech. (ONT)

- Variable lengths
- Long reads (mean >10,000 bp),
- Ultra-long reads (mean >100,000 bp)
- 40 Gb 2Tb throughput in 48 hour run
- High error rate (10% 20%)

IN THIS TALK...

- Fast algorithm for mapping long reads that scales to large reference databases [RECOMB 2017, JCB 2018]
- 2. Split-mapping and whole-genome homology maps [ECCB 2018]
- Alignment-free computation of genome-wide distance metrics [Nature Comm. (in press)]
- 4. Parallel algorithm to align long reads to graphs [IPDPS 2019 (under review)]

Georgia Institute for Data Tech I Engineering and Science

ALGORITHM TO MAP LONG READS TO LARGE DATABASES

LONG READ MAPPING TO REF. GENOME(S)

Georgia Institute for Data Tech Institute for Data

- Seed and Extend Heuristics -Slow and inefficient
- Lack of theoretical guarantees
- Popular tools- BLASR; BWAmem, GraphMap, Minimap

Goal : Alignment-free approximate algorithm for fast computation of mapping positions and identity estimates for long reads

Georgia Institute for Data Tech I Engineering and Science

Given a read, identify all target positions in reference where it aligns with $\leq \epsilon_{cutoff}$ error rate.

Reference B

G C C C A T C C G C C G A T C C G G T A T C C T C

Read A

G

G

Exact solution: Semi-global alignment; but computationally prohibitive O(|A||B|)

APPROXIMATION

Georgia Institute for Data Tech Engineering and Science

Given a read, identify all target positions in reference where it aligns with $\leq \epsilon_{cutoff}$ error rate.

WHY JACCARD?

Georgia Institute for Data Tech Engineering and Science

 Originally developed for scalable web document clustering

 $\epsilon_{\mathsf{mle}} = \mathcal{F}(J,k) = rac{-1}{k} imes \mathsf{log}\left(rac{2J}{1+J}
ight)$

 $\epsilon =$ alignment error-rate

WINNOWED-MINHASH ESTIMATOR

Georgia Institute for Data Tech Engineering and Science

WINNOWED-MINHASH ESTIMATOR

Georgia Institute for Data Tech I Engineering and Science

WINNOWED-MINHASH ESTIMATOR

Georgia Institute for Data Tech I Engineering and Science

ADDITIONAL DETAILS

- Winnowed-MinHash Jaccard Estimator. Adapt the classic minhash and minimizer techniques for efficiently computing Jaccard similarity along the reference.
- Choosing k-mer sampling rate. Automate the choice of an appropriate value of k-mer sampling rate

• **Proof of sensitivity.** Algorithm reports desired mappings (below the specified errorrate) with high probability.

[Jain et al. RECOMB 2017]

RESULTS

Jaccard similarity of k-mer sets yields high quality alignment identity estimates

Mashmap's estimated alignment identity

RESULTS

Georgia Institute for Data Tech Engineering and Science

Datasets

Mapping Time

(using AMD Opteron 2376 CPU)

Mashmap parameters Error threshold = 15%, read length ≥ 5K bp

ld	Query data	#Reads	Mean Length	Reference
N1	E. <i>coli</i> K12 (MinION)	30K	14.0 Kbp	K12
P1	Human (Pacbio)	18K	14.5 Kbp	GRCh38

Dataset	Mashmap	Minimap	BWA-mem	BLASR	
N1	54s	37s	5h 39m	10h 17m	
P1	1m 24s	1m 56s	6h 46m	20h 40m	

	Dataset	Mashmap	Minimap
(Recall)	N1	100%	99.87%
	P1	96.8%	98.7%
	Dataset	Mashmap	Minimap
(Precision)	N1	94.39%	94.32%
	(Recall) (Precision)	(Recall) N1 P1 Dataset N1	DatasetMashmap(Recall)N1100%P196.8%DatasetMashmap(Precision)N194.39%

First algorithm to scale to complete RefSeq database

- Reference : RefSeq (838 Gbp, >60K genomes)
- Query : Pacbio sequences (130 K) from mock Human Microbiome Project sample
- 29 CPU hours for index, and 16 CPU hours for mapping using 660 GB memory (BWA-mem, minimap, BLASR require more than a TB memory)

(Parameters: error threshold = 15%, read length $\ge 5K$ bp)

 Recall against BWA-mem mappings to 20 known genomes ranges from 97.7% to 99.1%

SPLIT READ MAPPING OF LONG READS AND WHOLE-GENOME COMPARISON

CONTRIBUTIONS

- Extend Mashmap algorithm to compute genome-to-genome mapping and split-read mapping
- Mathematically show that all valid local alignment boundaries, that satisfy the user-specified minimum alignment identity and length thresholds are reported with high probability
- New plane-sweep based O(n log n) algorithm to filter mappings; e.g., to identify orthologs or paralogs
- Mashmap2 operates in about a minute and < 4 GB memory to map human genome assembly to a human reference
- deployed for validating genome assemblies in the Vertebrae Genomes Project (VGP)

Input: query, reference, thresholds for local alignment (min. identity, min. length l₀)

Exact solution:

 $\Omega(|A||B|)$

Instead, seek mappings (long inexact seeds) along the optimal alignment

PROPOSED ALGORITHM

Georgia Institute for Data Tech Engineering and Science

Input: query, reference, thresholds for local alignment (min. identity, min. length lo)

1

- continue to assume the same error model
- split query into I₀/2-sized non-overlapping fragments
- map each one using Mashmap routine

 high probability of reporting at-least one seed mapping along the optimal alignment

FILTERING HEURISTIC

- For analysis of most promising mappings (e.g., orthologs, paralogs)
- Requires extensive filtering in mammalian genomes with high-copy repeats.

Formulation: Discard any mapping segment that is subsumed by higher scoring segments

PLANE-SWEEP BASED FILTERING

Georgia Institute for Data Tech Engineering and Science

conceptually sweep a horizontal line from bottom to top

PLANE-SWEEP BASED FILTERING

Georgia Institute for Data Tech Institute for Data

- process intersecting segments efficiently to achieve worst-case $O(n \log n)$ bound
- it is easily shown that this alignment filtering algorithm is optimal

WHOLE-GENOME ALIGNMENTS

Georgia Institute for Data Tech Engineering and Science

- Fundamental problem in bioinformatics
- Applications:
 - discover variants
 - detect evolutionarily conserved segments
 - identify large-scale chromosomal rearrangements
 - validate genome assemblies

- need faster and memory-efficient algorithms
- popular tools such as LAST and Nucmer still take >10 CPU hours to compare two human genomes

Target: genomes of 66,000 species

Target: 100,000 human genomes

EXPERIMENT-I

(Truth assumed)	Ref. genome	Query sequences		
	E. coli K12	E. coli O157 genome	D1	
Nucmer4 alignments	human	NA12878 human genome assembly (polished)	D2	Intra- species
	(hg38)	NA12878 human genome assembly	D3	
UCSC genome	gorilla	human genome	D4	Inter-
browser (BLASTZ)	(gorGor5)	chimp genome	D5	species

Parameters

Datasets

- Mashmap2 : alignment length: ≥ 10 Kbp, identity: ≥ 95% (intra), ≥ 90% (inter)
- Nucmer4 : [default] followed by delta-filter with '-1'

• Minimap2 : -*x asm5*

[Li, 2018] [Marçais et al., 2018]

RUNTIME / MEMORY-USE

Performance comparison

<u>Takeaways</u>

- Mashmap2 uses much less memory than other tools
- Alignment-free algorithms yield orders of magnitude speedup

<u>Accuracy</u>

- >97% sensitivity (recall) on all datasets
- Mashmap2's precision (fraction of candidate mappings satisfying thresholds): 35% 76%.

	Mashmap2		Minim	nap2	Nucmer4	
	Time	Memory	Time	Memory	Time	Memory
D1	0.5s	16M	0.4s	85M	5.2s	138M
D2	1m 26s	4G	3m 3s	17G	5h 01m	53G
D3	6m 33s	4G	3m 11s	16G	2h 10m	53G
D4	27m 33s	9G	15m 06s	27G	33h 04m	57G
D5	25m 40s	8G	5m 54s	26G	24h 58m	56G

EXPERIMENT-II: HUMAN V. HUMAN

Georgia Institute for Data Tech Engineering and Science

 Exhaustive search for all ≥ 1 Kbp repeats with ≥ 90% identity in the human genome

- Duplications in genome have implications in
 - Genome evolution and stability
 - Genetic diseases

EXPERIMENT-II: HUMAN V. HUMAN

Georgia Institute for Data Tech Engineering and Science

28

2. FAST-ANI: SCALABLE WHOLE-GENOME DISTANCE COMPUTATION WITH 90,000 MICROBIAL GENOMES

Genome A

FAST WHOLE-GENOME DISTANCE COMPUTATION

Georgia Institute for Data Tech Institute for Data

EUKARYOTIC TAXONOMY

PROKARYOTIC TAXONOMY

ANI: Average Nucleotide Identity defined as mean alignment identity of conserved genes in the two given genomes

- Popular genome-distance method in microbiology (for bacteria/archaea)
- Useful for taxonomic classification and computing evolutionary distances
- Existing alignment-based methods don't scale to current public genome databases
- The databases are now big and continue to grow fast
 - isolates
 - metagenomics (MAGs)
 - single-cell genomics (SAGs)

FASTANI ALGORITHM

Georgia Institute for Data Tech Engineering and Science

ANI: Average Nucleotide Identity [mean alignment identity of conserved genes in given genomes]

- Main computational bottleneck -> mapping sequences to compute conserved genomic segments
- Implement standard heuristics and replace BLAST with our alignment-free mapping framework
- Target: ANI within 80%-100% identity range

DO SPECIES BOUNDARIES EXIST?

Georgia Institute for Data Tech Institute for Data

- Scalable to perform all-to-all pairwise comparison among ALL 90K genomes in GenBank
- Existence of clusters (species) in prokaryotes is an open and widely debated question
- We show wide species boundaries using 4 billion genome comparisons
 - consistent with small-scale studies [Kim et al. 2014]

Distribution of ANI values among 90,000 genomes

[Jain et al. Nature Comm. 2018 (in press)]

PARALLEL SEQUENCE TO GRAPH ALIGNMENT

WHY MAP TO GRAPHS?

Georgia Institute for Data Tech Engineering and Science

Graphs are common in genomics:

- Multi-genome reference
 - Variation graphs
- Assembly
 - de Bruijn graphs
 - Overlap graphs
- RNA-seq analysis
 - Splicing graphs

Source: Genome graphs blog

WHY MAP TO GRAPHS?

Georgia Institute for Data Tech Engineering and Science

Genotyping using population reference genomes

- Improve mappability
- Detect unknown SNPs, SVs

Source: Zhang et. al. 2014

RNA-seq alignment to splicing graph

- compute gene expression
- detect novel splicing events w.r.t. reference

[Kuosmanen et al. 2017 Brief. in Bioinf.]

[Dilthey et al. 2015 Nature Genetics]

PROBLEM FORMULATION

Georgia Institute for Data Tech Engineering and Science

DAG $C \rightarrow T \qquad G(V, E)$ $C \rightarrow T \rightarrow A \rightarrow$

READ

Long read of length *m*

...GCCCCGCCGATCCGCCT...

Local Sequence Alignment to Graph:

Sequential time (Extension of Smith-Waterman to DAGs) Identify a path in the graph s.t. its optimal alignment score with a substring of the read is maximum

$$O(m(|V|+|E|))$$
 time and $O(|V|)$ memory

[Novarro 2000]

Theoretical guarantee
X Compute intensive

OUTCOMES

Algorithmic ideas:

- First parallel algorithm to utilize multi-core SIMD processors
- A three-stage algorithm to keep memory-usage low
- Leverages inter-task parallelism

Key results:

- Makes it possible to optimally align high coverage long read data-sets to large variant graphs (e.g., MHC, LRC)
- Runtime in the order of few minutes or hours; not feasible with prior algorithms.

CHALLENGES

Georgia Institute for Data Tech Institute for Data

- Number and structure of dependencies
- Existing parallel algorithms for local sequence-to-sequence alignment are either inapplicable or inefficient

PASGAL: KEY IDEAS

Georgia Institute for Data Tech Engineering and Science

 Three stages of the parallel algorithm for **low-memory usage** [Huang et al. 1990] 2. Vectorization (scope of 64x speedup with wide SIMD lanes)

3. Blocked computation instead of row-by-row for better **memory locality**

Blocked approach: majority of vertices have 'near' neighbors (SNPs, indels)

RESULTS

Georgia Institute for Data Tech Institute for Data

- Alignment of simulated long reads (10x coverage) to MHC variation graph [Dilthey et al. 2016]
 - Time to output base-to-base alignments: < 4 hours (takes multiple days with existing algorithms)
 - Peak performance: 317 billion cell updates per second (GCUPS)

COMPARISONS

Georgia Institute for Data Tech Institute for Data

- Achieve superior runtime and accuracy than previous exact and heuristic methods respectively.
- Data sets:
 - Variation graph: Leukocyte Receptor Complex (LRC) segment in human genome (|V|, |E| = 1 M)
 - Short read set : L1' (100 bp reads)
 - Long read sets : L2' (mean length = 10 Kbp), L3' (mean length = 25 Kbp)
- Comparison against **exact** algorithms
 - vg [exact]
 - Graphaligner
 - Single threaded execution
- Comparison against heuristic algorithm
 - vg [heuristic]

Speedups using PaSGAL

Reference graph	LRC		
Read set	L1′	L2′	L3′
vs. Graphaligner	10.7x	4.2x	3.0x
vs. vg-exact	25.3x	13.3x	-

Memory-usage

Reference graph		LRC	
Read set	L1′	L2′	L3'
PaSGAL (GB)	0.2	0.3	0.8
Graphaligner (GB)	1.1	1.1	1.1
vg-exact (GB)	0.7	108.8	-

Output accuracy using vg (heuristic)

Read set	L1′	L2′	L3′
Fraction of alignments with $> 5\%$ diff. from optimal score (%)	0.04	24.53	100
Fraction of alignments with $> 20\%$ diff. from optimal score (%)	0.00	9.40	100

ACKNOWLEDGEMENTS

Georgia Tech

Computational Science and Engineering

- Chirag Jain
- Haowen Zhang

Civil and Environmental Engineering

- Prof. Kostas Konstantinidis
- Miguel Rodriguez

National Human Genome Research Institute

Georgia Institute for Data Tech Engineering and Science

- Alexander Dilthey
- Sergey Koren
- Adam Phillippy

Parallel Computing Lab

Sanchit Misra

Funding
IIS-1416259, CCF-1816027