
LONG READ MAPPING AT SCALE: 

ALGORITHMS AND APPLICATIONS
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DATA DELUGE IN GENOMICS
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• Broad Institute sequenced its 
100,000th human genome [April, 
2018]

• 663 Tera bp DNA per month: 
equivalent to sequencing a human 
genome every 6 minutes

• Human genome project 
[1990 - 2003]

• First draft of the human 
genome published

• RefSeq reference genomes add to 1.3 
Tera bp (July 13, 2018) and growing!



LONG READ DNA SEQUENCING

• 150-bp reads

• Error-rates  ̴0.1%

S H O R T  R E A D S

MinION PromethION
Oxford Nanopore Tech. (ONT)

• Variable lengths

• Long reads (mean >10,000 bp), 

• Ultra-long reads (mean >100,000 bp)

• 40 Gb - 2Tb throughput in 48 hour run

• High error rate (10% - 20%)

L O N G  R E A D S
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Illumina NovaSeq

Genome

Reads

A C G T C G G G C A T C T C A T C T G …

(since 2006) (since 2011)



1. Fast algorithm for mapping long reads that scales to 
large reference databases
[RECOMB 2017, JCB 2018]

2. Split-mapping and whole-genome homology maps 
[ECCB 2018]

3. Alignment-free computation of genome-wide distance 
metrics
[Nature Comm. (in press)]

4. Parallel algorithm to align long reads to graphs    
[IPDPS 2019 (under review)]

IN THIS TALK…
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ALGORITHM TO MAP LONG 

READS TO LARGE DATABASES
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LONG READ MAPPING TO REF. GENOME(S)

Reference Genome (s)

Raw sequence reads

Mean length >10K bp

Error rate (10%- 20%)

• Seed and Extend Heuristics -
Slow and inefficient

• Lack of theoretical guarantees

• Popular tools- BLASR; BWA-
mem, GraphMap, Minimap
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Goal : Alignment-free approximate algorithm for fast computation of mapping positions and 
identity estimates for long reads



PROBLEM FORMULATION

G C C C A T C C G C C G A T C C G G T A T C C T C 

Exact solution: Semi-global alignment; but computationally prohibitive O(|A||B|)
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Read A

Reference B
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APPROXIMATION

G C C C A T C C G C C G A T …… C C G G T A T C C T C 

G
T
G

C
C

Read A

Reference B

Approximation using Jaccard 
similarity coefficient

k-mers

k-mers

8

k-mer sets

Bi

…
…



WHY JACCARD?

Jaccard similarity:

Jaccard similarity
⇤⇥ Error rate

WinnowingMinHash

[Broder 1997] [Schleimer 2003]

[Roberts 2004] [Fan 2015, Ondov 2016]

• Known techniques for efficient estimation of 
Jaccard similarity

• Originally developed for scalable web 
document clustering
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WINNOWED-MINHASH ESTIMATOR

12,  2,  3,  5,  17,  11,  19,  4,   8,   6,   1

{2,3,4,1}

minimizers [Schleimer 2003]

sketch [Broder 1997]

sketch size s=3

3 4

{2,3,1}

Winnowing

MinHash

window size w=5
2

10

1

k-mers



WINNOWED-MINHASH ESTIMATOR

Read A

Store all k-mers

Evaluate all positions

(Memory)

(Time)

w = window size [Schleimer 2003]

(storing minimizers is sufficient)
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Reference B



WINNOWED-MINHASH ESTIMATOR

Read A

Reference B

Store all k-mers

Evaluate all positions

(Memory)

(Time)
s = sketch size

w = window size [Schleimer 2003]

(storing minimizers is sufficient)

(sufficient minimizers should match)
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ADDITIONAL DETAILS

Performance Accuracy in Jaccard 
estimation

• Choosing k-mer sampling rate. Automate the choice of an appropriate value of k-mer 
sampling rate 

• Proof of sensitivity. Algorithm reports desired mappings (below the specified error-
rate) with high probability.
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• Winnowed-MinHash Jaccard Estimator. Adapt the classic minhash and minimizer 
techniques for efficiently computing Jaccard similarity along the reference.

[Jain et al. RECOMB 2017]



RESULTS

Jaccard similarity of k-mer sets yields high quality alignment identity estimates 

Mashmap’s estimated alignment identity

Smith-Waterman 
identity

Pacbio (P1) Nanopore (N1)
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RESULTS

Datasets

Mapping Time

Accuracy

Id Query data #Reads Mean Length Reference

N1 E. coli K12 (MinION) 30K 14.0 Kbp K12

P1 Human (Pacbio) 18K 14.5 Kbp GRCh38

Dataset Mashmap Minimap BWA-mem BLASR

N1 54s 37s 5h 39m 10h 17m

P1 1m 24s 1m 56s 6h 46m 20h 40m

Dataset Mashmap Minimap

N1 100% 99.87%

P1 96.8% 98.7%

Dataset Mashmap Minimap

N1 94.39% 94.32%

P1 84.59% 30.34%

(using AMD Opteron 2376 CPU)

Mashmap parameters
Error threshold = 15%, 
read length ≥ 5K bp

Filtering: BWA-mem and minimap (qcov ≥ 80%)

(Recall)

(Precision)

Recall: against BWA-mem mappings (with <15% error)

Precision: Validation using Smith-Waterman alignments

(<25% error, ≥ 80% qcov)
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RESULTS

First algorithm to scale to complete RefSeq database

• Reference : RefSeq (838 Gbp, >60K genomes)

• Query : Pacbio sequences (130 K) from mock 
Human Microbiome Project sample

• 29 CPU hours for index, and 16 CPU hours for 
mapping using 660 GB memory 
(BWA-mem, minimap, BLASR require more 
than a TB memory)

• Recall against BWA-mem mappings to 20 
known genomes ranges from 97.7% to 99.1% 

(Parameters: error threshold = 15%, read length ≥ 5K bp)
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SPLIT READ MAPPING OF LONG 

READS AND WHOLE-GENOME

COMPARISON
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CONTRIBUTIONS
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• Extend Mashmap algorithm to compute genome-to-genome mapping and split-read mapping

• Mathematically show that all valid local alignment boundaries, that satisfy the user-specified 
minimum alignment identity and length thresholds are reported with high probability

• New plane-sweep based O(n log n) algorithm to filter mappings; e.g., to identify orthologs or 
paralogs

• Mashmap2 operates in about a minute and < 4 GB memory to map human genome assembly to a 
human reference 

• deployed for validating genome assemblies in the Vertebrae Genomes Project (VGP)



PROBLEM FORMULATION

19

… C G C A G C C G A … C G C G T A T C … 

G
T
G
T
…
C
G
T

Query A

Reference B

≥ l0

Input: query, reference, thresholds for local alignment (min. identity, min. length l0)

Exact solution: 

Instead, seek mappings (long 
inexact seeds) along the 
optimal alignment



PROPOSED ALGORITHM
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• continue to assume the same error model

• split query into l0/2-sized non-overlapping fragments

• map each one using Mashmap routine

query sequence

ref. sequence

1

• merge adjacent fragment mappings

• score each mapping by length x identity estimate

3

Input: query, reference, thresholds for local alignment (min. identity, min. length l0)

• high probability of reporting at-least one seed mapping 
along the optimal alignment

Probability

2

Sensitivity with min. identity 90%

True identity

91%

90%

92%



FILTERING HEURISTIC
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• For analysis of most promising mappings (e.g., orthologs, paralogs)

• Requires extensive filtering in mammalian genomes with high-copy repeats.

Formulation: Discard any mapping segment that is subsumed by higher scoring segments
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5

21

5

Naive algorithm : 

Can we do better?Query

sequence

Reference sequence

Mappings
2

Yes, in                 time 

[Shamos and Hoey 1976]

Plane-sweep technique



2

PLANE-SWEEP BASED FILTERING
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Reference

23

5

21

5

23

21

Best for query

2

Query

➢ conceptually sweep a horizontal line from bottom to top 



PLANE-SWEEP BASED FILTERING

23

Reference

23

5

21

5

23

21

Query

Reference

23

21

23

21

Best for query Best for query and ref. (orthologs only)

➢ useful for filtering orthologs, paralogs…

2 2

• process intersecting segments efficiently to achieve worst-case                  bound 

• it is easily shown that this alignment filtering algorithm is optimal

➢ conceptually sweep a horizontal line from bottom to top 



WHOLE-GENOME ALIGNMENTS
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• Fundamental problem in bioinformatics

• Applications:

• discover variants

• detect evolutionarily conserved segments

• identify large-scale chromosomal rearrangements

• validate genome assemblies
Genome 2

Genome 1

Source: genoPlotR 

Target: genomes of 66,000 
species

Target: 100,000 human 
genomes

• Exponential increase in publicly available genome assemblies

• need faster and memory-efficient algorithms

• popular tools such as LAST and Nucmer still take >10 CPU hours to compare 
two human genomes



Query sequences Ref. genome (Truth assumed)

Intra-

species

D1 E. coli O157 genome E. coli K12 

Nucmer4 
alignments

D2
NA12878 human genome 

assembly (polished) human 
(hg38) 

D3
NA12878 human genome 

assembly

Inter-

species

D4 human genome gorilla 
(gorGor5)

UCSC genome 
browser (BLASTZ)D5 chimp genome

EXPERIMENT-I
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• Mashmap2 : alignment length: ≥ 10 Kbp, identity: ≥ 95% (intra), ≥ 90% (inter)

• Minimap2  : -x asm5

• Nucmer4   : [default] followed by delta-filter with ‘-1’
[Li, 2018]

[Marçais et al., 2018]

Datasets

Parameters



RUNTIME / MEMORY-USE
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Performance 
comparison

Takeaways

Mashmap2 Minimap2    Nucmer4

Time Memory Time Memory Time Memory

D1 0.5s 16M 0.4s 85M 5.2s 138M

D2 1m 26s 4G 3m 3s 17G 5h 01m 53G

D3 6m 33s 4G 3m 11s 16G 2h 10m 53G

D4 27m 33s 9G 15m 06s 27G 33h 04m 57G

D5 25m 40s 8G 5m 54s 26G 24h 58m 56G

• Mashmap2 uses much less memory than other tools

• Alignment-free algorithms yield orders of magnitude speedup

Accuracy • >97% sensitivity (recall) on all datasets

• Mashmap2’s precision (fraction of candidate mappings satisfying thresholds): 35% — 76%.



EXPERIMENT-II :  HUMAN V. HUMAN 
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• Exhaustive search for all ≥ 1 Kbp repeats with ≥ 90% 
identity in the human genome

• Duplications in genome have implications in

• Genome evolution and stability

• Genetic diseases

A visual of all ≥ 1 Kbp homologs 
computed by Mashmap2

human genome

human 
genome
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human (hg38) v. human (hg38) Sensitivity w.r.t. UCSC seg-dup database

Validation using LAST

Mashmap2

[≥ 1 Kbp, ≥ 90% identity]

Filter: off

210 million duplications

(10.3% coverage on human genome)

EXPERIMENT-II :  HUMAN V. HUMAN 

Chromosomes (1-22, X, Y, M)

97.15%



2. FAST-ANI: SCALABLE WHOLE-

GENOME DISTANCE COMPUTATION 

WITH 90,000 MICROBIAL GENOMES

Genome A

Genome B Source: genoPlotR 
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FAST WHOLE-GENOME DISTANCE COMPUTATION

ANI: Average Nucleotide Identity 
defined as mean alignment identity of conserved genes in the 
two given genomes

• Popular genome-distance method in microbiology (for 
bacteria/archaea)

• Useful for taxonomic classification and computing 
evolutionary distances

• Existing alignment-based methods don’t scale to current 
public genome databases

• The databases are now big and continue to grow fast

• isolates 

• metagenomics (MAGs)

• single-cell genomics (SAGs)

P R O K A R Y O T I C  T A X O N O M Y

E U K A R Y O T I C  T A X O N O M Y

TCCGCCGATTCCGCCGATTCCGCCG

(use DNA sequences)
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FASTANI ALGORITHM

• Main computational bottleneck -> mapping 
sequences to compute conserved genomic 
segments

• Implement standard heuristics and replace 
BLAST with our alignment-free mapping 
framework

• Target: 
ANI within 80%-100% identity range

Bi-directional best matches

Genome A Genome B

genes

ANI: Average Nucleotide Identity 
[mean alignment identity of conserved genes in given genomes]
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DO SPECIES BOUNDARIES EXIST?

Count of 

comparisons

FastANI estimate

• Scalable to perform all-to-all pairwise 
comparison among ALL 90K genomes in 
GenBank

• Existence of clusters (species) in 
prokaryotes is an open and widely debated 
question

• We show wide species boundaries using 4 
billion genome comparisons

• consistent with small-scale studies 
[Kim et al. 2014]

Distribution of ANI values among 90,000 genomes
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[Jain et al. Nature Comm. 2018 (in press)]



PARALLEL SEQUENCE TO 

GRAPH ALIGNMENT
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Graphs are common in genomics:

• Multi-genome reference

• Variation graphs 

• Assembly

• de Bruijn graphs 

• Overlap graphs

• RNA-seq analysis

• Splicing graphs

WHY MAP TO GRAPHS?

Source: Genome graphs blog
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https://www.statnews.com/2016/10/07/dna-genome-sequencing-new-maps/


WHY MAP TO GRAPHS?

Genotyping using population 
reference genomes

• Improve mappability
• Detect unknown SNPs, SVs

[Dilthey et al. 2015 Nature Genetics]

Alternative Splicing

RNA-seq alignment to splicing 
graph

• compute gene expression
• detect novel splicing events 

w.r.t. reference

[Kuosmanen et al. 2017 Brief. in Bioinf.]

Source: Zhang et. al. 2014
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PROBLEM FORMULATION

D A G R E A D

Local Sequence Alignment to 
Graph: 

…GCCCCGCCGATCCGCCT…

C

T

T

A

40

C

Sequential time 
(Extension of Smith-Waterman 
to DAGs)

[Novarro 2000]

Long read of length

Theoretical guarantee           Compute intensive

Identify a path in the graph s.t. its optimal alignment score with a 
substring of the read is maximum



OUTCOMES
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Algorithmic ideas: 

• First parallel algorithm to utilize multi-core SIMD processors

• A three-stage algorithm to keep memory-usage low

• Leverages inter-task parallelism 

Key results:

• Makes it possible to optimally align high coverage long read data-sets to 
large variant graphs (e.g., MHC, LRC)

• Runtime in the order of few minutes or hours; not feasible with prior 
algorithms.



CHALLENGES

42

• Number and structure of dependencies

• Existing parallel algorithms for local sequence-to-sequence alignment are 
either inapplicable or inefficient



PASGAL: KEY IDEAS
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1. Three stages of the parallel 
algorithm for low-memory usage
[Huang et al. 1990] 

2. Vectorization (scope of 
64x speedup with wide 
SIMD lanes)

3. Blocked computation 
instead of row-by-row for 
better memory locality

Blocked approach: majority 
of vertices have ‘near’ 
neighbors (SNPs, indels)



RESULTS
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Time (s)

(log-scale) Speedup

➢ 58.7x speedup using vectorization and better 
memory locality on single core

➢ Strong-scaling: near linear speedup using 48 
cores

• Alignment of simulated long reads (10x coverage) to MHC variation graph [Dilthey et al. 2016] 

• Time to output base-to-base alignments: < 4 hours  (takes multiple days with existing algorithms)

• Peak performance: 317 billion cell updates per second (GCUPS) 



COMPARISONS 
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• Achieve superior runtime and accuracy than previous 
exact and heuristic methods respectively.

• Data sets: 
• Variation graph:  Leukocyte Receptor Complex (LRC) segment in 

human genome (|V|, |E| =  1 M)

• Short read set : L1’ (100 bp reads)

• Long read sets : L2’ (mean length = 10 Kbp), L3’ (mean length = 
25 Kbp)

• Comparison against exact algorithms 

• vg [exact]   

• Graphaligner

• Single threaded execution

➢ Speedups using PaSGAL

➢ Memory-usage

➢ Output accuracy using vg (heuristic)

• Comparison against heuristic algorithm

• vg [heuristic]
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