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Problem 

Exact Matching:
qGiven a text string T of length n and a pattern string P of 

length m, the exact string matching problem is to find all 
occurrences of P in T.

Approximate Matching
qGiven a text string T of length n and a pattern string P of 

length m, the approximate string matching problem is to 
find all “almost”- occurrences of P in T.
q Allow mismatches (substitution): Hamming distance
q Allow insertion/deletion/substitution: edit distance
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Based on Exact Matching

q Pigeonhole principle: If we have “k” locations and “k+1” pigeons, at 

least one location must have more than one pigeon.

q Find a bridge between exact matching and approximate matching, 

to handle “k” errors:

q Divide the pattern “P” to “k+1” parts (non-overlapping, non-empty) , so, at 

least one part must have no error (exactly match).

q Use an exact matching algorithm to find exact matches for each part, Look 

for a longer approximate match in the vicinity of the exact match up to “k” 

mismatches.

qNew principle: Let p1, p2, ..., pj be a partitioning of P into j (j< k+1) non-
overlapping non-empty substrings. If P occurs with up to k edits, then at 

least one of p1, p2, ..., pj must occur with ≤ floor(k / j) edits.
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Exact Matching
q Greedy Algorithms: Most of the efficient string matching algorithms 

in the DNA alphabet are modifications of the Boyer–Moore
algorithm [1].
q Bad character heuristic, good suffix rule
q The pattern is moved forward (shift) after the first character mismatch of an 

alignment is observed [2,3].
q Shift can be based on a single character or q-grams (strings of q 

characters) [4] uses two characters for indexing a two dimensional array.
q An extension of Boyer-Moore algorithm [5]: shift array is indexed with an 

integer formed from a q-gram with shift and add instructions.
q Kim and Shawe-Taylor[6]:  Using alphabet compression by masking the 

three lowest bits of ASCII characters. 
qKMP, bitap, Robin-Karp, and many more.
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Boyer-Moore

q Better version of naive exact matching by skipping pointless alignments:
q Learn from character comparisons to skip pointless alignments

q Naive exact matching: Two nested loops, outer loop is used to go over 
each alignment, and inner loop for looping over characters:
qloop over alignments
qloop over characters
qcompare characters

qBoyer-Moore: Alignments in left-to-right order, and try character 
comparisons in right-to-left order
q Two rules to skip pointless alignments:

qBad character rule
qGood prefix rule

Boyer, RS and Moore, JS. "A fast string searching algorithm.” Communications of the ACM 20.10 
(1977):762-772. 7



Boyer-Moore: Bad character rule
qUpon mismatch, skip alignments until

q Mismatch becomes a match, or
q P moves past mismatchedcharacter
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T: G C T T C T G C T A C C T T T T G C G TCAG C G C G G A A

P: C C T T T T G C
Step 3:

T:
P:

G C T T C T G C T A C C T T T T G C G TCAG C G C G G A A  

C C T T T T G C
Step 1:

T: G C T T C T G C T A C C T T T T G C G TCAG C G C G G A A

P: C C T T T T G C
Step 2:



Boyer-Moore: Good suffix rule

q Let say t = substring matched by inner loop; skip until
q (a) there  are no mismatches between P and t or
q (b) Pmoves past t
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T: C G T G C C T A C T T A C T T A C T T A A G T A C G C G A A

P: C T T A C T T A C
Step 3:
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t
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Overlapping partitions(q-grams)

What if we have overlapping partitions?
qWe have n - q +1 of them

qWorst case: 1 edit to P changes up to q substrings 

qMinimum # of length-q substrings unedited after k edits?
q n - q + 1 - kq 

qq-grams lemma: if P occurs in T with up to k edits, alignment must 
contain t exact matches of length q, where t ≥ n - q + 1 – kq

...

n

.........

q

n - q+1



q-grams principles

qIf P occurs in T with up to k edits, alignment contains an exact 
match of length q, where q ≥ floor(n / (k + 1)) 

qExact matching filter: find matches of length floor(n / (k + 1)) 
between T and any substring of P. Check vicinity for full match.

11



Outline

q Problem of Approximate Sequence Matching
q Type of Solutions:

q Solution based on Exact Sequence Matching 
q Pigeonhole principle

q Solutions based on dynamic programming
q Solutions based on String Data Structures (SA, lcp), LCA, SA intervals,...
q Solutions based on Filters
q Solutions based on Deterministic Automata
qSolutions based on Bit Parallelism (parallelize another algorithm using bits)
q Solutions based on String Data Structures (SA, lcp), LCA, SA intervals,...
q Solutions based on Indexing and/or Dynamic programing

q Summary

12



Dynamic Programming

! = !# ………!%&#!%

' = '# ………'(&#'(

)%,( = Min number of operations needed to turn X to Y

Note: We assume edit distance of the shorter strings have already 
been computed. Convert one to another (delete the last char of one 
and insert the other)
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Can we do better? Indexing (reducing search space) + Better DP
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Based on ST, SA, lcp... 

• Matching under bounded “k” edits:[1]
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Bounded number of errors 
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Bounded number of errors 
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Summary
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Boyer-Moore 

Based on Dynamic 
programming

Using String data 
structures (SA, lcp, SA 

intervals), HPD 

Filters

Bit Parallelism 

Using Exact Matching
(pigeonhole  principle)

Naive Exact Matching

Knuth-Morris-Pratt
Rabin-Karp

Bitap

[Ukk85a, Mye 86b]

[Vin68, NW70, San72, Sel 
74, WF74, LW75]

Based on Indexing and/or  
Dynamic programming 

(Reducing Search Space)

Four Russians Technique [MP80]Based on Deterministic 
Automata

Lazy Automaton [Kur96,  Nav97b]

[Mel96]

Parallelized DP Matrix [Wri 94]

[BYN99]
Bit-Parallel NFA [WM92a]

Horspool-like filters [TU93]

Partition in k+1 pieces

[Thankachan18]

[Chockalingam16]

Bidirectional index [Kucherov 14]

Compressed Index [Russo 09]


