
Approximate Sequence Matching
Algorithms to Handle Bounded Number of

Errors

Neda Tavakoli
Computational Science and Engineering

Georgia Institute of Technology

StringBio Workshop
University of Central Florida

10/27/18

1

Outline

q Problem of Approximate Sequence Matching
q Type of Solutions:

q Solution based on Exact Sequence Matching
q Pigeonhole principle

q Solutions based on dynamic programming
q Solutions based on String Data Structures (SA, lcp), LCA, SA intervals,...
q Solutions based on Filters
q Solutions based on Deterministic Automata
q Solutions based on Bit Parallelism (parallelize another algorithm using bits)
qSolutions based on Indexing and/or Dynamic programing

q Summary

2

Problem

Exact Matching:
qGiven a text string T of length n and a pattern string P of

length m, the exact string matching problem is to find all
occurrences of P in T.

Approximate Matching
qGiven a text string T of length n and a pattern string P of

length m, the approximate string matching problem is to
find all “almost”- occurrences of P in T.
q Allow mismatches (substitution): Hamming distance
q Allow insertion/deletion/substitution: edit distance

3

Outline

q Problem of Approximate Sequence Matching
q Type of Solutions:

q Solution based on Exact Sequence Matching
q Pigeonhole principle

q Solutions based on dynamic programming
q Solutions based on String Data Structures (SA, lcp), LCA, SA intervals,...
q Solutions based on Filters
q Solutions based on Deterministic Automata
qSolutions based on Bit Parallelism (parallelize another algorithm using bits)
q Solutions based on String Data Structures (SA, lcp), LCA, SA intervals,...
q Solutions based on Indexing and/or Dynamic programing

q Summary

4

Based on Exact Matching

q Pigeonhole principle: If we have “k” locations and “k+1” pigeons, at

least one location must have more than one pigeon.

q Find a bridge between exact matching and approximate matching,

to handle “k” errors:

q Divide the pattern “P” to “k+1” parts (non-overlapping, non-empty) , so, at

least one part must have no error (exactly match).

q Use an exact matching algorithm to find exact matches for each part, Look

for a longer approximate match in the vicinity of the exact match up to “k”

mismatches.

qNew principle: Let p1, p2, ..., pj be a partitioning of P into j (j< k+1) non-
overlapping non-empty substrings. If P occurs with up to k edits, then at

least one of p1, p2, ..., pj must occur with ≤ floor(k / j) edits.

5

P1 P2 P3 Pk+1

Exact Match

Exact Matching
q Greedy Algorithms: Most of the efficient string matching algorithms

in the DNA alphabet are modifications of the Boyer–Moore
algorithm [1].
q Bad character heuristic, good suffix rule
q The pattern is moved forward (shift) after the first character mismatch of an

alignment is observed [2,3].
q Shift can be based on a single character or q-grams (strings of q

characters) [4] uses two characters for indexing a two dimensional array.
q An extension of Boyer-Moore algorithm [5]: shift array is indexed with an

integer formed from a q-gram with shift and add instructions.
q Kim and Shawe-Taylor[6]: Using alphabet compression by masking the

three lowest bits of ASCII characters.
qKMP, bitap, Robin-Karp, and many more.

6

[1] Kalsi, Petri, Hannu Peltola, and Jorma Tarhio. "Comparison of exact string matching algorithms for biological sequences.”
Bioinformatics Research and Development. Springer, Berlin, Heidelberg, 2008. 417-426.

[2] Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
Journal on Computing 6(1), 323–350 (1977)
[3] Boyer, R.S., Moore, J S.: A fast string searching algorithm. Communications of the ACM 20(10), 762–772 (1977)
[4] Zhu, R.F., Takaoka, T.: On improving the average case of the Boyer–Moore string
matching algorithm. Journal of Information Processing 10(3), 173–177 (1987)
[5] Baeza-Yates, R.: Improved string searching. Software: Practice and Experi- ence 19(3), 257–271 (1989)
[6] Kim, J.W., Kim, E., Park, K.: Fast matching method for DNA sequences. In: Chen,
B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 271–281.
Springer, Heidelberg (2007)

Boyer-Moore

q Better version of naive exact matching by skipping pointless alignments:
q Learn from character comparisons to skip pointless alignments

q Naive exact matching: Two nested loops, outer loop is used to go over
each alignment, and inner loop for looping over characters:
qloop over alignments
qloop over characters
qcompare characters

qBoyer-Moore: Alignments in left-to-right order, and try character
comparisons in right-to-left order
q Two rules to skip pointless alignments:

qBad character rule
qGood prefix rule

Boyer, RS and Moore, JS. "A fast string searching algorithm.” Communications of the ACM 20.10
(1977):762-772. 7

Boyer-Moore: Bad character rule
qUpon mismatch, skip alignments until

q Mismatch becomes a match, or
q P moves past mismatchedcharacter

8

T: G C T T C T G C T A C C T T T T G C G TCAG C G C G G A A

P: C C T T T T G C
Step 3:

T:
P:

G C T T C T G C T A C C T T T T G C G TCAG C G C G G A A

C C T T T T G C
Step 1:

T: G C T T C T G C T A C C T T T T G C G TCAG C G C G G A A

P: C C T T T T G C
Step 2:

Boyer-Moore: Good suffix rule

q Let say t = substring matched by inner loop; skip until
q (a) there are no mismatches between P and t or
q (b) Pmoves past t

9

T: C G T G C C T A C T T A C T T A C T T A A G T A C G C G A A

P: C T T A C T T A C
Step 3:

T:
P:

C G T G C C T A C T T A C T T A C T T A A G T A C G C G A A

C T T A C T T A C
Step 1:

t

T: C G T G C C T A C T T A C T T A C T T A A G T A C G C G A A

P: C T T A C T T A C
Step 2:

t

Overlapping partitions(q-grams)

What if we have overlapping partitions?
qWe have n - q +1 of them

qWorst case: 1 edit to P changes up to q substrings

qMinimum # of length-q substrings unedited after k edits?
q n - q + 1 - kq

qq-grams lemma: if P occurs in T with up to k edits, alignment must
contain t exact matches of length q, where t ≥ n - q + 1 – kq

...

n

.........

q

n - q+1

q-grams principles

qIf P occurs in T with up to k edits, alignment contains an exact
match of length q, where q ≥ floor(n / (k + 1))

qExact matching filter: find matches of length floor(n / (k + 1))
between T and any substring of P. Check vicinity for full match.

11

Outline

q Problem of Approximate Sequence Matching
q Type of Solutions:

q Solution based on Exact Sequence Matching
q Pigeonhole principle

q Solutions based on dynamic programming
q Solutions based on String Data Structures (SA, lcp), LCA, SA intervals,...
q Solutions based on Filters
q Solutions based on Deterministic Automata
qSolutions based on Bit Parallelism (parallelize another algorithm using bits)
q Solutions based on String Data Structures (SA, lcp), LCA, SA intervals,...
q Solutions based on Indexing and/or Dynamic programing

q Summary

12

Dynamic Programming

! = !# ………!%&#!%

' = '# ………'(&#'(

)%,(= Min number of operations needed to turn X to Y

Note: We assume edit distance of the shorter strings have already
been computed. Convert one to another (delete the last char of one
and insert the other)

13

Can we do better? Indexing (reducing search space) + Better DP

14

Navarro, Gonzalo. "A guided tour to approximate
string matching." ACM computing surveys
(CSUR) 33.1 (2001): 31-88.

Outline

q Problem of Approximate Sequence Matching
q Type of Solutions:

q Solution based on Exact Sequence Matching
q Pigeonhole principle

q Solutions based on dynamic programming
q Solutions based on String Data Structures (SA, lcp), LCA, SA intervals,...
q Solutions based on Filters
q Solutions based on Deterministic Automata
qSolutions based on Bit Parallelism (parallelize another algorithm using bits)
q Solutions based on String Data Structures (SA, lcp), LCA, SA intervals,...
q Solutions based on Indexing and/or Dynamic programing

q Summary

15

Based on ST, SA, lcp...

• Matching under bounded “k” edits:[1]

16

[1]Thankachan, Sharma V., et al. "Algorithmic framework for approximate matching under bounded
edits with applications to sequence analysis." International Conference on Research in Computational
Molecular Biology. Springer, Cham, 2018.

Bounded number of errors

17

Thankachan, Sharma V., et al. "Algorithmic framework for approximate matching under bounded edits
with applications to sequence analysis." International Conference on Research in Computational
Molecular Biology. Springer, Cham, 2018.

Bounded number of errors

18

Thankachan, Sharma V., et al. "Algorithmic framework for approximate matching under bounded edits
with applications to sequence analysis." International Conference on Research in Computational
Molecular Biology. Springer, Cham, 2018.

Summary

19

Boyer-Moore

Based on Dynamic
programming

Using String data
structures (SA, lcp, SA

intervals), HPD

Filters

Bit Parallelism

Using Exact Matching
(pigeonhole principle)

Naive Exact Matching

Knuth-Morris-Pratt
Rabin-Karp

Bitap

[Ukk85a, Mye 86b]

[Vin68, NW70, San72, Sel
74, WF74, LW75]

Based on Indexing and/or
Dynamic programming

(Reducing Search Space)

Four Russians Technique [MP80]Based on Deterministic
Automata

Lazy Automaton [Kur96, Nav97b]

[Mel96]

Parallelized DP Matrix [Wri 94]

[BYN99]
Bit-Parallel NFA [WM92a]

Horspool-like filters [TU93]

Partition in k+1 pieces

[Thankachan18]

[Chockalingam16]

Bidirectional index [Kucherov 14]

Compressed Index [Russo 09]

