Faster Computation of Genome Mappability with One

Mismatch

Sahar Hooshmand, Paniz Abedin, Daniel Gibney, Srinivas Aluru,
Sharma V. Thankachan

1. University of Central Florida
2. Georgia Institute of Technology

October 18, 2018

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 1/28

Overview

© Mappability
@ Definition
@ Applications
@ An example
@ Previous results
@ Qur results

© Our Algorithm Framework
@ Heavy Path Decomposition
@ Definition
@ An example

© Our Algorithm
@ Construction of s-Trees and hp-Trees
@ Processing of s-Trees and hp-Trees

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 2/ 28

Mappability - Definition

k-Mappability problem:

@ Input: A sequence S[1, n] of length n and two integers k and m < n

@ QOutput: An integer array Fi s.t:
Felil =14 # i | du(S[i,i+m—1],S[j,j+ m—1]) < k} |

e dy(+,-) : Hamming Distance

@ S[i,i+ m—1]: The substrings of length m starting at position i

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 3/28

Mappability - Example

e Input: S[1,8] = CCACAACAwithm=3,k=0or1l
@ QOutput: Integer arrays Fg and Fi:

Index 1 2 3 4 5 6 7 8
S[1,8 ¢ C A C A A C A

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 4 /28

Mappability - Example

@ Input: S[1,8] = CCACAACAwith m=3, k=0or1
@ QOutput: Integer arrays Fy and Fi:

Index 1 2 3 4 5 6 7 8

S, ¢ C A C A A CA
Position i 1 2 3 4 5 6
substring | CCA | CAC | ACA | CAA | AAC | ACA
Foli] 0 0 1 0 0 1
F1[i] 3 2 2 2 1 2

Hooshmand et al. (UCF)

Faster Computation of Genome Mappability v

October 18, 2018

Mappability - Example

e Input: S[1,8] = CCACAACAwith m=3, k=0,1
@ Output: Integer arrays Fy and Fi:

Index 1 2 3 4 5 6 7 8

S[1,8 ¢ C A C A A C A
Position i 1 2 3 4 5 6
substring | CCA | CAC | ACA | CAA | AAC | ACA
Foli] 0 0 1 0 0 1
Fili] 3 2 2 2 1 2

Fo[3] : ACA at index 6

F1[3] : ACA at index 6, CCA at index 1

Hooshmand et al. (UCF)

Faster Computation of Genome Mappability v

October 18, 2018

Mappability - Applications

@ Derrien et al. : It is a measure of the approximate repeat structure of
the genome with respect to substrings of specific length and a
tolerance for mismatches.

@ W. Lietal. : It can be used in Designing or interpreting
high-throughput short read sequencing experiments

@ A.Huda et al. : It can be used to quantify transcription counts in
gene expression studies.

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 7/ 28

Mappability - Previous results

@ 0-mappability problem: can be easily solved in linear time using the
suffix tree data structure

@ k > 1 : Derrien et al. proposed a heuristic algorithm to approximate
the solution.

@ 1-mappability problem: Alzamel et al. proposed three linear space
algorithms with run times as follows:

@ An O(nlognloglog n) algorithm.
@ An O(nm) time algorithm.
© An O(n) average-case time algorithm for m = Q(log n).
@ More recently Alzamel et al. provided a solution for k-mappability
using O(nmin(logk*1 n, m*)) time and linear space
@ Our result for 1-mappability problem:
O(nlog n) time and O(n) space.

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 8 /28

Our Algorithm Framework

@ The algorithm consists of two phases:
1. In the first phase we construct data structures based on the suffix tree
of the input string.

o Side-tree (s-tree)
o HeavyPath-tree (hp-tree)

2. In the second phase we traverse these data structures and gather the
desired values for computing Fy array.

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 9 /28

/

Heavy Path Decomposition

@ Start at the root, w, of the tree. We will consider w as a light node.

@ Take w's child, v, which has the largest subtree size and add it to
the heavy path. We will refer to the node v as w's heavy child.

@ Continue adding nodes to the heavy path in this fashion until we
reach a leaf.

@ Recurse on each light node adjacent to the heavy path.

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 10 / 28

Heavy Path Decomposition - Example

Figure: Nodes without double circles at the root of every heavy path are called
light nodes. Double circles are called heavy nodes.

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 11 /28

Heavy Path Decomposition - Key Observations

Observation

@ For a tree having n nodes, the path from the root to any leaf
traverses at most [log n] light nodes.

@ The sum of subtree sizes of all light nodes in a tree is O(nlog n).

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 12 /28

Our Algorithm - Phase 1 Preliminaries

u: An internal node

u': u's heavy child

a: The leading character on the edge towards v'.
S;i: The suffix of S starting at position i

Definition

Modified Suffix S/: is obtained from S; under subtree of u after replacing
its (strDepth(u) + 1)th character by «

ﬁ4>d

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 13 /28

Our Algorithm - Phase 1 Preliminaries

Suff(u): The set of suffixes corresponding to the leaves of subtree(u).

u: An internal node

u’": u's heavy child

Definition

Side-Tree (s-Tree):
is a compact trie over all modified strings in

Suff'(u) = {S] | Si € Suff(u)\Suff(u/)}

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 14 / 28

s-Tree - Example

Figure: As an illustration, we show a portion of a suffix tree (on left) and the
corresponding s-Tree(+) w.r.t. a light node w (on right).

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018

Definition

HeavyPath-tree (hp-Tree):

For each light node w , hp-Tree(w) is as a compact trie of s-Trees of all
nodes on the heavy path rooted at w (modified suffixes) and Original
suffixes corresponding to the leaves of subtree(w).

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 16 / 28

Our Algorithm - Phase 1

@ Input: A sequence S[1, n] of length n and two integers k = 1 and
m<n

© Perform a heavy path decomposition of the Suffix Tree of S.
@ Construct a s-Tree for every node u where strDepth(u) < m.

@ Construct a hp-Tree for every light node w where
strDepth(w) < m.

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 17 / 28

Our Algorithm - Phase 2

@ There are 3 possibilities that can have an effect on the output array
Fi:
o Two suffixes have already |LCP| > m

o Two modified suffixes have |LCP| > m

o One original suffix and one modified suffix have [LCP| > m

|LCP|= Length of the longest common prefix

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018

Phase 2: Step 1 - Processing s-Trees

Definition
A node v is marked iff strDepth(parent(v)) < m < strDepth(v).

String
depth

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 19 / 28

Phase 2: Step 1 - Processing s-Trees

@ When |LCP| of two modified suffixes > m: Scanning s-trees

Compute the array Fy
Initialize array F; to zero
for each node v in ST with strDepth(v) < m do
for every marked node v, in s-Tree(v) do
scan leaves of v's subtree
if leaf corresponds to a modified suffix S/ then
F1[i] is incremented by (size(v) - Fo[i] — 1).
end if
end for
end for

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 20 / 28

Phase 2: Step 2 - Processing hp-Trees

@ When |LCP| of one modified suffix and one original suffix > m :
Scanning hp-trees

for each light node w in ST with strDepth(w) < m do
for every marked node v in hp-Tree(w) do
Compute the number of modified suffixes ¢’ and the number of
unmodified suffixes c.
On a second scan of the same leaves:
if a leaf corresponds to an unmodified suffix S; then
increment F1[i] by ¢’
else if a leaf corresponds to a modified suffix S/ then
increment F1[i] by c.
end if
end for
end for

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 21 /28

Phase 2: Step 3 - Remove double counted matches

@ z; : Marked node on the path towards the leaf corresponding to S;.

for i from 1 to n-m+1 do
if z; is a light node then
increment F[i] by Foli],
else
decrement F1[i] by Foli].
end if
end for

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 22 /28

Time and Space complexity

o Time complexity:
e Phase 1, Constructing s-Trees and hp-Trees: Can be implemented in
O(nlog n) time.
e Phase 2, Processing Trees: Runs in time proportional to the number of
leaves in all of the hp-Trees and s-Trees combined. So, this phase also
takes O(nlog n).

e Space complexity:
o Each phase can be maintained at O(n).

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 23 /28

Future Work: Solving K-mappability problem

We solved 1-mappability problem in O(nlog n) time and
O(n) space.

Can we use the ideas presented here to get a O(nlog”n)
solution for general kK > 17

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 24 /28

References

[1] M. Alzamel, P. Charalampopoulos, C. S. lliopoulos, S. P. Pissis, J. Ra-
doszewski, and W.-K. Sung. Faster algorithms for 1-mappability of a
sequence. In International Conference on Combinatorial Optimization and
Applications, pages 109121. Springer, 2017.

[2] M. R. Brown and R. E. Tarjan. A fast merging algorithm. Journal of
the ACM (JACM), 26(2):211226, 1979.

[3] R. Cole, L. Gottlieb, and M. Lewenstein. Dictionary matching and
indexing with errors and dont cares. In Proceedings of the 36th Annual
ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-
16, 2004, pages 91100, 2004.

[4] T. Derrien, J. Estelle , S. M. Sola, D. G. Knowles, E. Raineri, R. Guigo
, and P. Ribeca. Fast computation and applications of genome
mappability. PloS one, 7(1):€30377, 2012.

[5] M. Farach. Optimal suffix tree construction with large alphabets. In
38th Annual Symposium on Foundations of Computer Science, FOCS 97,
Miami Beach, Florida, USA, October 19-22, 1997, pages 137143, 1997.

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 25 /28

References

[6] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common
ancestors. SIAM J. Comput., 13(2):338355, 1984.

[7] A.Huda,L.Marin o-Ram rez,D.Landsman,andl.K.Jordan.Repetitive dna
elements, nucleosome binding and human gene expression. Gene,
436(1):1222, 20009.

[8] W. Li and J. Freudenberg. Mappability and read length. Frontiers in
genetics, 5:381, 2014.

[9] K. Sadakane. Compressed suffix trees with full functionality. Theory of
Computing Systems, 41(4):589607, 2007.

[10] B. Schieber and U. Vishkin. On finding lowest common ancestors:
Sim- plification and parallelization. SIAM Journal on Computing,
17(6):1253 1262, 1988.

[11] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. In
Proceedings of the 13th Annual ACM Symposium on Theory of
Computing, May 11-13, 1981, Milwaukee, Wisconsin, USA, pages 114 122,
1981.

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 26 / 28

References

[12] S. V. Thankachan, C. Aluru, S. P. Chockalingam, and S. Aluru. Al-
gorithmic framework for approximate matching under bounded edits with
applications to sequence analysis. In Research in Computational Molecular
Biology - 22nd Annual International Conference, RECOMB 2018, Paris,
France, April 21-24, 2018, Proceedings, pages 211224, 2018.

[13] S. V. Thankachan, A. Apostolico, and S. Aluru. A provably efficient
algorithm for the k-mismatch average common substring problem. Journal
of Computational Biology, 23(6):472482, 2016.

[14] E. Ukkonen. On-line construction of suffix trees. Algorithmica,
14(3):249260, 1995.

[15] P. Weiner. Linear Pattern Matching Algorithms. In SWAT, pages 111,
1973.

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018 27 / 28

Thank you!

Hooshmand et al. (UCF) Faster Computation of Genome Mappability v October 18, 2018

	Mappability
	Definition
	Applications
	An example
	Previous results
	Our results

	Our Algorithm Framework
	Heavy Path Decomposition
	Definition
	An example

	Our Algorithm
	Construction of s-Trees and hp-Trees
	Processing of s-Trees and hp-Trees

