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Mappability - Definition

k-Mappability problem:

@ Input: A sequence S[1, n] of length n and two integers k and m < n

@ QOutput: An integer array Fi s.t:
Felil =14 # i | du(S[i,i+m—1],S[j,j+ m—1]) < k} |

e dy(+,-) : Hamming Distance

@ S[i,i+ m—1]: The substrings of length m starting at position i
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Mappability - Example

e Input: S[1,8] = CCACAACAwithm=3,k=0or1l
@ QOutput: Integer arrays Fg and Fi:

Index 1 2 3 4 5 6 7 8
S[1,8 ¢ C A C A A C A
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Mappability - Example

@ Input: S[1,8] = CCACAACAwith m=3, k=0or1
@ QOutput: Integer arrays Fy and Fi:

Index 1 2 3 4 5 6 7 8

S, ¢ C A C A A CA
Position i 1 2 3 4 5 6
substring | CCA | CAC | ACA | CAA | AAC | ACA
Foli] 0 0 1 0 0 1
F1[i] 3 2 2 2 1 2
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Mappability - Example

e Input: S[1,8] = CCACAACAwith m=3, k=0,1
@ Output: Integer arrays Fy and Fi:

Index 1 2 3 4 5 6 7 8

S[1,8 ¢ C A C A A C A
Position i 1 2 3 4 5 6
substring | CCA | CAC | ACA | CAA | AAC | ACA
Foli] 0 0 1 0 0 1
Fili] 3 2 2 2 1 2

Fo[3] : ACA at index 6

F1[3] : ACA at index 6, CCA at index 1
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Mappability - Applications

@ Derrien et al. : It is a measure of the approximate repeat structure of
the genome with respect to substrings of specific length and a
tolerance for mismatches.

@ W. Lietal. : It can be used in Designing or interpreting
high-throughput short read sequencing experiments

@ A.Huda et al. : It can be used to quantify transcription counts in
gene expression studies.
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Mappability - Previous results

@ 0-mappability problem: can be easily solved in linear time using the
suffix tree data structure

@ k > 1 : Derrien et al. proposed a heuristic algorithm to approximate
the solution.

@ 1-mappability problem: Alzamel et al. proposed three linear space
algorithms with run times as follows:

@ An O(nlognloglog n) algorithm.
@ An O(nm) time algorithm.
© An O(n) average-case time algorithm for m = Q(log n).
@ More recently Alzamel et al. provided a solution for k-mappability
using O(nmin(logk*1 n, m*)) time and linear space
@ Our result for 1-mappability problem:
O(nlog n) time and O(n) space.
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Our Algorithm Framework

@ The algorithm consists of two phases:
1. In the first phase we construct data structures based on the suffix tree
of the input string.

o Side-tree (s-tree)
o HeavyPath-tree (hp-tree)

2. In the second phase we traverse these data structures and gather the
desired values for computing Fy array.
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Heavy Path Decomposition

@ Start at the root, w, of the tree. We will consider w as a light node.

@ Take w's child, v, which has the largest subtree size and add it to
the heavy path. We will refer to the node v as w's heavy child.

@ Continue adding nodes to the heavy path in this fashion until we
reach a leaf.

@ Recurse on each light node adjacent to the heavy path.
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Heavy Path Decomposition - Example

Figure: Nodes without double circles at the root of every heavy path are called
light nodes. Double circles are called heavy nodes.
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Heavy Path Decomposition - Key Observations

Observation

@ For a tree having n nodes, the path from the root to any leaf
traverses at most [log n] light nodes.

@ The sum of subtree sizes of all light nodes in a tree is O(nlog n).
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Our Algorithm - Phase 1 Preliminaries

u: An internal node

u': u's heavy child

a: The leading character on the edge towards v'.
S;i: The suffix of S starting at position i

Definition

Modified Suffix S/: is obtained from S; under subtree of u after replacing
its (strDepth(u) + 1)th character by «

ﬁ4>d
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Our Algorithm - Phase 1 Preliminaries

Suff(u): The set of suffixes corresponding to the leaves of subtree(u).

u: An internal node

u’": u's heavy child

Definition

Side-Tree (s-Tree):
is a compact trie over all modified strings in

Suff'(u) = {S] | Si € Suff(u)\Suff(u/)}
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s-Tree - Example

Figure: As an illustration, we show a portion of a suffix tree (on left) and the
corresponding s-Tree(+) w.r.t. a light node w (on right).
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Definition

HeavyPath-tree (hp-Tree):

For each light node w , hp-Tree(w) is as a compact trie of s-Trees of all
nodes on the heavy path rooted at w (modified suffixes) and Original
suffixes corresponding to the leaves of subtree(w).
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Our Algorithm - Phase 1

@ Input: A sequence S[1, n] of length n and two integers k = 1 and
m<n

© Perform a heavy path decomposition of the Suffix Tree of S.
@ Construct a s-Tree for every node u where strDepth(u) < m.

@ Construct a hp-Tree for every light node w where
strDepth(w) < m.
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Our Algorithm - Phase 2

@ There are 3 possibilities that can have an effect on the output array
Fi:
o Two suffixes have already |LCP| > m

o Two modified suffixes have |LCP| > m

o One original suffix and one modified suffix have [LCP| > m

|LCP|= Length of the longest common prefix
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Phase 2: Step 1 - Processing s-Trees

Definition
A node v is marked iff strDepth(parent(v)) < m < strDepth(v).

String
depth
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Phase 2: Step 1 - Processing s-Trees

@ When |LCP| of two modified suffixes > m: Scanning s-trees

Compute the array Fy
Initialize array F; to zero
for each node v in ST with strDepth(v) < m do
for every marked node v, in s-Tree(v) do
scan leaves of v's subtree
if leaf corresponds to a modified suffix S/ then
F1[i] is incremented by (size(v) - Fo[i] — 1).
end if
end for
end for
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Phase 2: Step 2 - Processing hp-Trees

@ When |LCP| of one modified suffix and one original suffix > m :
Scanning hp-trees

for each light node w in ST with strDepth(w) < m do
for every marked node v in hp-Tree(w) do
Compute the number of modified suffixes ¢’ and the number of
unmodified suffixes c.
On a second scan of the same leaves:
if a leaf corresponds to an unmodified suffix S; then
increment F1[i] by ¢’
else if a leaf corresponds to a modified suffix S/ then
increment F1[i] by c.
end if
end for
end for
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Phase 2: Step 3 - Remove double counted matches

@ z; : Marked node on the path towards the leaf corresponding to S;.

for i from 1 to n-m+1 do
if z; is a light node then
increment F[i] by Foli],
else
decrement F1[i] by Foli].
end if
end for
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Time and Space complexity

o Time complexity:
e Phase 1, Constructing s-Trees and hp-Trees: Can be implemented in
O(nlog n) time.
e Phase 2, Processing Trees: Runs in time proportional to the number of
leaves in all of the hp-Trees and s-Trees combined. So, this phase also
takes O(nlog n).

e Space complexity:
o Each phase can be maintained at O(n).
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Future Work: Solving K-mappability problem

We solved 1-mappability problem in O(nlog n) time and
O(n) space.

Can we use the ideas presented here to get a O(nlog”n)
solution for general kK > 17
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Thank you!
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