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Minimizers definition and properties

Minimizers (k,w, 0)
In each window of w consecutive k-mers, select the smallest

k-mer according to order o.

1. Uniform: distance between selected k-mers is < w

2. Deterministic: two strings matching on w consecutive
k-mers select the same minimizer



Computing read overlaps

N
1. Uniform: no
cequence ‘ Cluster by
. minimizer
ignored

Deterministic:
reads with

overlap in
same bin

Overlaps



Many applications of minimizers

e UMDOVverlapper (Roberts, 2004): bin sequencing
reads by shared minimizers to compute overlaps

o MSPKmerCounter (Li, 2015), KMC2 (Deorowicz, 2015),
Gerbil (Erber, 2017): bin input sequences based on
minimizer to count k-mers in parallel

e SparseAssembler (Ye, 2012), MSP (Li, 2013), DBGFM
(Chikhi, 2014): reduce memory footprint of de Bruijn
assembly graph with minimizers

e SamSAMi (Grabowski, 2015): sparse suffix array with
minimizers

e MiniMap (Li, 2016), MashMap (Jain, 2017): sparse
data structure for sequence alignment

e Kraken (Wood, 2014): taxonomic sequence classifier



Improving minimizers by lowering density

Density
_ — - ' Density of a scheme is the

expected proportion of
selected k-merin a
random sequence:
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Improving minimizers by lowering density

Density
_ — - ' Density of a scheme is the

- =T T — —_ . expected proportion of
- = T _——  selected k-merina
e o random sequence:
Y W e S S — ' _ # of selected k-mers

length of sequence

Lower density
Cluster by N
‘ minimizer — smaller bins
- = — less computation




Minimizers density minimizing problem

For fixed k and w:

e Properties “Uniform” & “Deterministic” unaffected by
order

e Density changes with ordering o

e Lower density = sparser data structures and/or less
computation

e Benefit existing and new applications



Minimizers density minimizing problem

For fixed k and w:

e Properties “Uniform” & “Deterministic” unaffected by
order

e Density changes with ordering o

e Lower density = sparser data structures and/or less
computation

e Benefit existing and new applications

Density minimization problem
For fixed w, k, find k-mer order o giving the lowest expected

density



Density and density factor trivial bounds

Density

Pick every k-mer

1 =~
— <d<'1

w
~—

Pick every other w k-mer

d = # of minimizers per base



Density and density factor trivial bounds

Density
Density factor

Pick every k-mer
! d< 1 1
w S@s 14— < df = (W+1)d < w+1

{s

Pick every other w k-mer
df ~ # of minimizers per window
d = # of minimizers per base



Expected and bound on density

For an idealized random
order o:

Expect ~ 2 minimizers per
window

Schleimer 2003, Roberts 2004

For any order o:
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Expected and bound on density

For an idealized random
order o:

Expect ~ 2 minimizers per
window

Not valid for w > k

Schleimer 2003, Roberts 2004

For any order o:

54 L
1ot ow df > 1'5+L
w+ 1

>
Y 2w

Requires > 1.5 minimizers
per window

Valid only for w > k



Asymptotic behavior in k and w

What is the best ordering possible when:

e wis fixed and k — oo

e kis fixedand w — oo
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Asymptotic behavior in w
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Asymptotic behavior in w
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Asymptotic behavior in k

Asymptotically optimal minimizers schemes
There exists a sequence of orders (0 )xeny Which are

asymptotically optimal:
1

1
y v 14—
dfok k—o00 + w

do
K ksoo W
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Depathing the de Bruijn graph

Optimal vertex cover of the de Bruijn graph (Lichiardopol

2006)
There exists a sequence of vertex cover V, of DB, which is

asymptotically optimal in size:

ok

V| — &
|k|k—>oo 2

Optimal depathing of the de Bruijn graph
For a fixed w, there exists a sequence (Uy)xen Of sets of

k-mers that covers every path of length w in DB such that

ok

|Ug| —— —
k w
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Bound on density

For all k, w and order o:

w

. 1.5+21—W+max<O,Lk’—WJ>

w+ k
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Bound on density

For all k, w and order o:

1.5+ o + max (0, |45 )

>
dz w+ k
daf > 1+ ’IW for large k
df >1.5+ i for large w

2w
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Density factor of minimizers

Asymptotic behavior of minimizers is fully characterized:

e Minimizers scheme is optimal for large k: df P 1+ 2
—00

e Minimizers scheme is not optimal for large w: df = Q(w)
e Better lower bound on d
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Density factor of minimizers

Asymptotic behavior of minimizers is fully characterized:

e Minimizers scheme is optimal for large k: df P 1+ 2
—00

e Minimizers scheme is not optimal for large w: df = Q(w)
e Better lower bound on d

Good: Not good:
e First example of e Large k less interesting
optimal minimizers in practice
scheme e Minimizers don’t have
e Constructive proof constant density
factor
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Generalizing minimizers: local and forward schemes

Local scheme
Given f : W+k=1 _ [0,w — 1], for each window w, select

k-mer at position f(w).
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Generalizing minimizers: local and forward schemes

Local scheme
Given f : W+k=1 _ [0,w — 1], for each window w, select

k-mer at position f(w).

Minimizers scheme with order o is a local scheme where
f=argminjcpo w1y 0(wli : k])
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Generalizing minimizers: local and forward schemes

Local scheme
Given f : W+k=1 _ [0,w — 1], for each window w, select
k-mer at position f(w).

Minimizers scheme with order o is a local scheme where
f=argminjcpo w1y 0(wli : k])

Forward scheme
Local scheme such that f(w') > f(w) — 1 if suffix of w’ equals

prefix of w
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Local & forward as better minimizers schemes

Minimizers ;Cé Forward ;Cé Local

e Properties “Uniform” & “Deterministic” also satisfied
e Drop-in replacement for minimizers
e Potential for lower density
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Density factor overview

Density factor df

k — oo W — 0o
Scheme Best Bound
Minimizers
Forward

Local
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Density factor overview

Density factor df

k — oo W — 00
Scheme Best Bound
Minimizers 1+  O(w) Q(w)

Forward T+L1 o(w) ~15+4
Local T+L1 o(ww) 1+
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Conclusion: the quest for constant density factor

e Minimizers schemes can’t achieve constant density
factor

e Local and forward schemes may achieve constant
density factor

e Design of optimal orders or functions f still open
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