

Generalization of the minimizers schemes

Guillaume Marçais, Dan DeBlasio, Carl Kingsford

Carnegie Mellon University

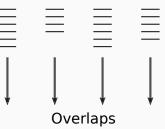
Roberts, *et al.* (2004). Reducing storage requirements for biological sequence comparison.

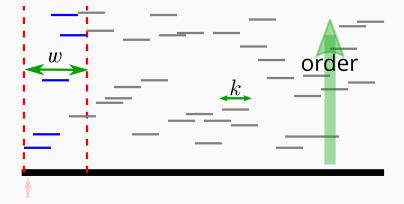
Roberts, *et al.* (2004). Reducing storage requirements for biological sequence comparison.

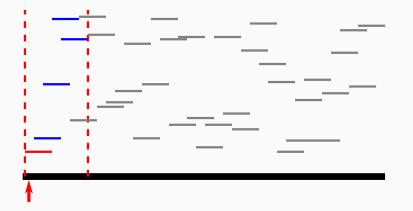
$O(n^2)$ alignments

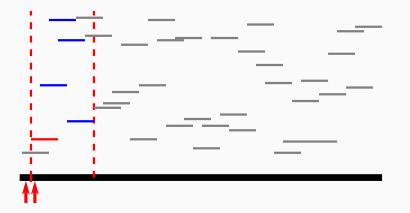
Roberts, *et al.* (2004). Reducing storage requirements for biological sequence comparison.

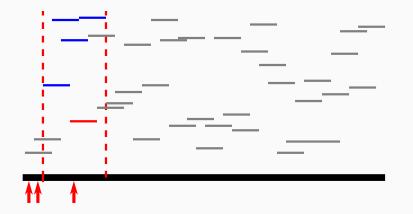
Cluster by similarity

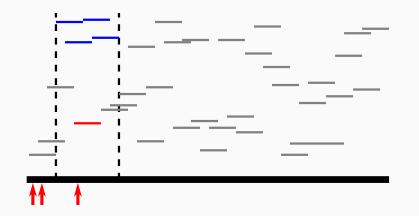


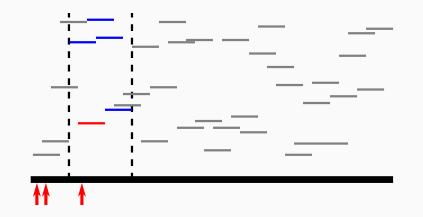


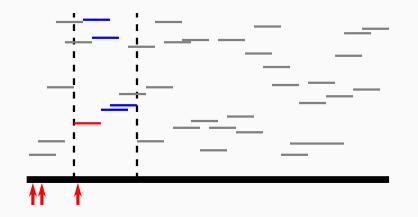


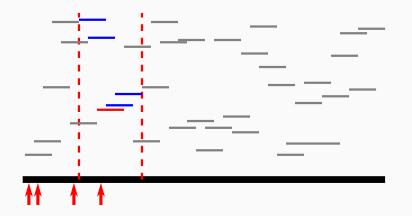


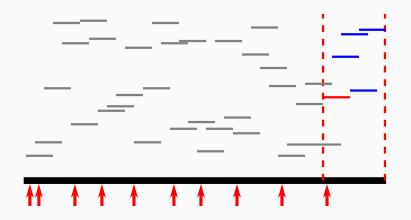






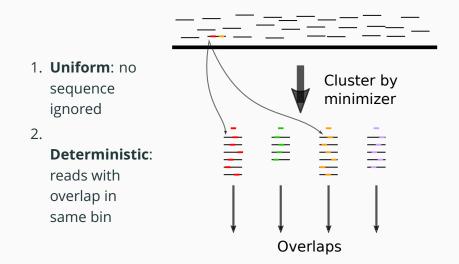






Minimizers (k, w, o)In each window of *w* consecutive *k*-mers, select the smallest *k*-mer according to order *o*.

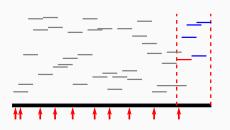
- 1. **Uniform**: distance between selected *k*-mers is $\leq w$
- 2. **Deterministic**: two strings matching on *w* consecutive *k*-mers select the same minimizer



Many applications of minimizers

- **UMDOverlapper (Roberts, 2004)**: bin sequencing reads by shared minimizers to compute overlaps
- MSPKmerCounter (Li, 2015), KMC2 (Deorowicz, 2015), Gerbil (Erber, 2017): bin input sequences based on minimizer to count k-mers in parallel
- SparseAssembler (Ye, 2012), MSP (Li, 2013), DBGFM (Chikhi, 2014): reduce memory footprint of de Bruijn assembly graph with minimizers
- **SamSAMi (Grabowski, 2015)**: sparse suffix array with minimizers
- MiniMap (Li, 2016), MashMap (Jain, 2017): sparse data structure for sequence alignment
- Kraken (Wood, 2014): taxonomic sequence classifier

Improving minimizers by lowering density

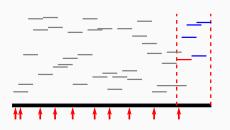


Density

Density of a scheme is the expected proportion of selected *k*-mer in a random sequence:

 $d = \frac{\# \text{ of selected } k\text{-mers}}{\text{length of sequence}}$

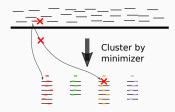
Improving minimizers by lowering density



Density

Density of a scheme is the expected proportion of selected *k*-mer in a random sequence:

 $d = \frac{\# \text{ of selected } k\text{-mers}}{\text{length of sequence}}$



Lower density

- \implies smaller bins
- \implies less computation

Minimizers density minimizing problem

For fixed *k* and *w*:

- Properties "Uniform" & "Deterministic" unaffected by order
- Density changes with ordering o
- Lower density \implies sparser data structures and/or less computation
- Benefit existing and new applications

Density minimization problem For fixed *w*, *k*, find *k*-mer **order** *o* giving the lowest expected **density**

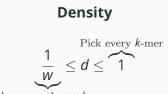
Minimizers density minimizing problem

For fixed *k* and *w*:

- Properties "Uniform" & "Deterministic" unaffected by order
- Density changes with ordering o
- Lower density \implies sparser data structures and/or less computation
- Benefit existing and new applications

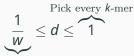
Density minimization problem

For fixed *w*, *k*, find *k*-mer **order** *o* giving the lowest expected **density**



Pick every other $w\;k\text{-}\mathrm{mer}$

d = # of minimizers per base



Density factor

$$1 + \frac{1}{w} \le df = (w+1) \cdot d \le w+1$$

Pick every other w k-mer

d = # of minimizers per base

 $\mathit{df} \approx \mathit{\#}$ of minimizers per window

For an *idealized random* order *o*:

$$d=\frac{2}{w+1} \qquad df=2$$

 $\label{eq:Expect} Expect \approx 2 \text{ minimizers per} \\ window$

For any order *o*:

$$d \ge rac{1.5 + rac{1}{2w}}{w + 1}$$
 $df \ge 1.5 + rac{1}{2w}$

Requires \geq 1.5 minimizers per window

Schleimer 2003, Roberts 2004

For an *idealized random* order *o*:

$$d=\frac{2}{w+1} \qquad df=2$$

 $\label{eq:Expect} Expect \approx 2 \text{ minimizers per} \\ window$

Not valid for $w \gg k$

For any order *o*:

$$d \ge rac{1.5 + rac{1}{2w}}{w+1}$$
 $df \ge 1.5 + rac{1}{2w}$

Requires \geq 1.5 minimizers per window

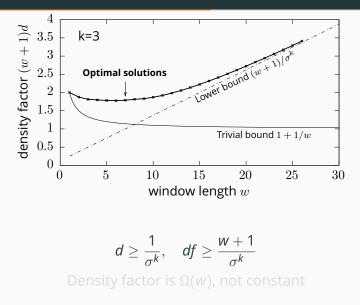
Valid only for $w \gg k$

Schleimer 2003, Roberts 2004

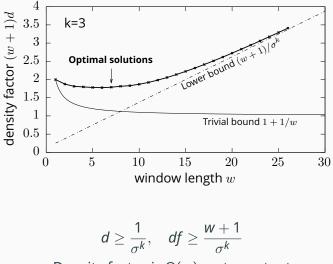
What is the best ordering possible when:

- *w* is fixed and $k \to \infty$
- *k* is fixed and $w \to \infty$

Asymptotic behavior in *w*



Asymptotic behavior in *w*



Density factor is $\Omega(w)$, not constant

Asymptotically optimal minimizers schemes There exists a sequence of orders $(o_k)_{k \in \mathbb{N}}$ which are asymptotically optimal:

$$d_{o_k} \xrightarrow[k \to \infty]{} rac{1}{W} \qquad df_{o_k} \xrightarrow[k \to \infty]{} 1 + rac{1}{W}$$

Depathing the de Bruijn graph

Optimal vertex cover of the de Bruijn graph (Lichiardopol 2006)

There exists a sequence of vertex cover V_k of DB_k which is asymptotically optimal in size:

$$V_k | \xrightarrow[k \to \infty]{} \frac{\sigma^k}{2}$$

Optimal depathing of the de Bruijn graph For a fixed *w*, there exists a sequence $(U_k)_{k \in \mathbb{N}}$ of sets of *k*-mers that covers every path of length *w* in DB_k such that

$$|U_k| \xrightarrow[k \to \infty]{} \frac{\sigma^k}{w}$$

For **all** *k*, *w* and order *o*:

$$d \geq \frac{1.5 + \frac{1}{2w} + \max\left(0, \lfloor \frac{k-w}{w} \rfloor\right)}{w+k}$$

For **all** *k*, *w* and order *o*:

$$d \ge \frac{1.5 + \frac{1}{2w} + \max\left(0, \lfloor \frac{k-w}{w} \rfloor\right)}{w+k}$$
$$df \ge 1 + \frac{1}{w}$$
$$df \ge 1.5 + \frac{1}{2w}$$

for large k

for large W

Asymptotic behavior of minimizers is fully characterized:

- Minimizers scheme is optimal for large k: $df \xrightarrow[k \to \infty]{} 1 + \frac{1}{w}$
- Minimizers scheme is not optimal for large *w*: $df = \Omega(w)$
- Better lower bound on *d*

Asymptotic behavior of minimizers is fully characterized:

- Minimizers scheme is optimal for large k: $df \xrightarrow[k \to \infty]{} 1 + \frac{1}{w}$
- Minimizers scheme is not optimal for large *w*: $df = \Omega(w)$
- Better lower bound on *d*

Good:

- First example of optimal minimizers scheme
- Constructive proof

Not good:

- Large *k* less interesting in practice
- Minimizers **don't** have constant density factor

Generalizing minimizers: local and forward schemes

Local scheme

Given $f : \Sigma^{w+k-1} \to [0, w-1]$, for each window ω , select *k*-mer at position $f(\omega)$.

Generalizing minimizers: local and forward schemes

Local scheme

Given $f : \Sigma^{w+k-1} \to [0, w-1]$, for each window ω , select *k*-mer at position $f(\omega)$.

Minimizers scheme with order *o* is a local scheme where $f = \arg \min_{i \in [0, w-1]} o(\omega[i : k])$

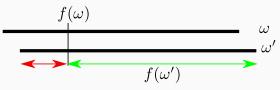
Local scheme

Given $f : \Sigma^{w+k-1} \to [0, w-1]$, for each window ω , select *k*-mer at position $f(\omega)$.

Minimizers scheme with order *o* is a local scheme where $f = \arg \min_{i \in [0, w-1]} o(\omega[i : k])$

Forward scheme

Local scheme such that $f(\omega') \ge f(\omega) - 1$ if suffix of ω' equals prefix of ω



$\mathsf{Minimizers} \subsetneqq \mathsf{Forward} \subsetneqq \mathsf{Local}$

- Properties "Uniform" & "Deterministic" also satisfied
- Drop-in replacement for minimizers
- Potential for lower density

Density factor <i>df</i>				
	$k \to \infty$	$W ightarrow\infty$		
Scheme		Best	Bound	
Minimizers				
Forward				
Local				

Density factor <i>df</i>					
	$k \to \infty$	$W ightarrow\infty$			
Scheme		Best	Bound		
Minimizers Forward Local	$1 + \frac{1}{w}$	<i>O</i> (<i>w</i>)	Ω(<i>W</i>)		

Density factor <i>df</i>					
	$k \to \infty$	$W ightarrow\infty$			
Scheme		Best	Bound		
Minimizers	$1 + \frac{1}{w}$	<i>O</i> (<i>w</i>)	$\Omega(W)$		
Forward	$1 + \frac{1}{w}$	$O(\sqrt{W})$	$\sim 1.5 + \frac{1}{2w}$		
Local					

Density factor <i>df</i>				
	$k \to \infty$	$W ightarrow\infty$		
Scheme		Best	Bound	
Minimizers	$1 + \frac{1}{w}$	<i>O</i> (<i>w</i>)	$\Omega(W)$	
Forward	$1 + \frac{1}{w}$	$O(\sqrt{W})$	$\sim 1.5 + \frac{1}{2w}$	
Local	$1 + \frac{1}{w}$	$O(\sqrt{W})$	$1 + \frac{1}{w}$	

- Minimizers schemes can't achieve constant density factor
- Local and forward schemes **may** achieve **constant** density factor
- Design of optimal orders or functions *f* still open

Carl Kingsford group:

Dan DeBlasio Heewook Lee Natalie Sauerwald Cong Ma Hongyu Zheng Laura Tung *Postdoc position open*

