Debruijn Graph and its Application in **Genome Assembly** and **Variant Calling**

Bahar Alipanahi

Genome Assembly

Genome Assembly

Genome Assembly

http://people.mpi-inf.mpg.de/~sven/images/assembly.png

4

Well-Known Assembly Approaches

	Overlap Layout Consensus (OLC)	De Bruijn Graph (DBG)
Advantage	Read coherency	Lack of coherency
Disadvantag e	Computationally intensive	Computationally tractable

Overlap Layout Consensus (OLC)

De Bruijn Graph Algorithm: K-mers

A substring of length K

S = A C G T T C G A All 4 mers: A C G T C G T T G T T C T T C G T C G A

De Bruijn Graph Algorithm

Choose a value of k.

For each *k*-mer that exists in any sequence create an edge with one vertex labeled as the prefix and one vertex labeled as the suffix.

(Pevzner, Tang & Tesler, 2004) 8

De Bruijn Graphs Construction

GTCT**ATTCG**CTA**ATTCA**CTA

(Pevzner, Tang & Tesler, 2004)

De Bruijn Graphs Construction

GTCT**ATTCG**CTA**ATTCA**CTA

(Pevzner, Tang & Tesler, 2004)

De Bruijn Graphs Construction

GTCT**ATTCG**CTA**ATTCA**CTA

(Pevzner, Tang & Tesler, 2004)

De Bruijn Graph

Sequence Read: ABCDEFGHICDEFGKL

k-mers		(k - 1))-mers
ABCD H	HICD	ABC	HIC
BCDE 1	ICDE	BCD	ICD
CDEF E	EFGK	CDE	FGK
DEFG B	FGKL	DEF	GKL
EFGH		EFG	
GHIC		GHI	

De Bruijn Graph

Example Genome: ABCDEFGHICDEFGKL

Traversing: Find walks on DBG

Contig: ABCDEFGHICDEFGKL

Typical De Bruijn Graph

over a billion nodes for a very small bacteria genome

Ambiguities in Traversing

ABCDEFGHICDEFGKL

Ambiguities in Traversing

Bulges (Undirected cycles)

Read 1 = CGACGTC

Read 2 = CGAGGTC

Tackling the Ambiguities in Traversing

Auxiliary information to guied the traversing

- Positional de Bruijn graph
- Type of colored de Bruijn graph (readcolored de bruijn graph)

Genome Variant Calling

Genome Variants

Single Nucleotide Polymorphism (SNP)

Genome Variants

Well-Known Variant Callers

	Reference-based	Reference-free		
		Overlap-Layout Consensus	De Bruijn Graph	
Advantage	Read-coherent	Read- coherent	Non-read- coherent	
Disadvantag e	Unculturable species	Inefficient	Efficient	

Variant Calling using DBG

Sample 1 = CGACGTC

Sample 2 = CGAGGTC

Variant Calling using Colored DBG

Sample 1 = CGACGTC

Sample 2 = CGAGGTC

Conclusion

Conclusion

- Following topics are being stutied in lots of projects:
 - Colored de Bruijn graph
 - Read colored de Bruijn graph
 - Positional de Bruijn graph
 - Variable-ordered de Bruijn graph
 - Succinct representation of de Bruijn graph

Questions?

Genome Assembly Challenges

• > 50% of human genome are repeats

