
SAPLING: Suffix Array Piecewise Linear
INdex for Genomics

Michael Kirsche
mkirsche@jhu.edu

StringBio 2018

Outline
➢ Substring Search Problem
➢ Caching and Learned Data Structures
➢ Methods
➢ Results
➢ Ongoing work

Substring Search Problem
One of the most common problems in genomics:

Given a string s and a pattern p,
Find all occurrences where p occurs as a substring of s

Example:
S = “ACCATGATGG”
p = “CAT”

Substring search is a core component of many read and whole genome aligners
including Bowtie, BWA, STAR, BLAST, MUMmer, and many others
● “Seed” portion of Seed-and-Extend algorithms

Suffix Arrays
Several data structures have been proposed for accelerating the substring search
problem including suffix trees, suffix arrays, BWT/FM-index, Hash tables, etc

The suffix array is one of the most widely used approaches
S=CATTAGA

[6] A

[4] AGA

[1] ATTAGA

[0] CATTAGA

[5] GA

[3] TAGA

[2] TTAGA

● The SA is the sorted list of the suffixes of a string
stored implicitly as the index where each suffix begins

● Very fast: Faster than FM-Index using binary
search-like algorithm

● Space Efficient: Less compact than FM-index,
although very practical on modern servers

● Powerful: Supports variable length queries

 (Manber & Meyers, 1990)

Suffix Array Queries
By indexing all possible suffixes, the suffix array indexes all substrings of S
● Each occurrence of a pattern p in a string S corresponds to a prefix (the

beginning) of some suffix of S
● Solution consists of a contiguous range of rows, each row corresponding to a

specific offset of the original string

S=CATGCGCATGCTAGCATCAT
p=CAT

 ...
 [15] ATCAT
 [01] ATGCGCATGCTAGCATCAT
 [07] ATGCTAGCATCAT
🐱 [17] CAT
🐱 [14] CATCAT
🐱 [00] CATGCGCATGCTAGCATCAT
🐱 [06] CATGCTAGCATCAT
 [04] CGCATGCTAGCATCAT
 [10] CTAGCATCAT
 [13] GCATCAT
 ...

Searching the Suffix Array
Binary search-like algorithm:

● Check middle of suffix array
and compare suffix starting
there to query - if too high
check lower half of suffix array,
and if too low check upper half

● Repeat this process to make
the search range smaller until
there is only one position left

Because search range is cut in half
in each round, it can quickly identify
the correct rows

p=CAT
S=<Human Genome>

3
bi

lli
on

 s
uf

fix
es

P <> S

P <> S

P <> S

P <> S

A
ll

oc
cu

re
nc

es
 o

f C
A

T

#rounds = log2(3B) = ~32

...

S
ec

on
ds

 p
er

 5
 m

ill
io

n
qu

er
ie

s

0

Caching and Binary Search

In theory, searching should scale linearly
with log2 of the genome size

Caching and Binary Search
S

ec
on

ds
 p

er
 5

 m
ill

io
n

qu
er

ie
s

0

In practice, searching is much slower for
large genome sizes

Caching and Binary Search
S

ec
on

ds
 p

er
 5

 m
ill

io
n

qu
er

ie
s

0

In practice, searching is much slower for
large genome sizes

Binary search suffers from poor locality
causing many lookups in main memory

Memory Hierarchy

Suffix Array Prediction
p=CAT

S=<Human Genome>

P <> S

P <> S

P <> S

P <> S ...

What if instead of a slow algorithmic approach to find the correct rows,
we could somehow quickly guess/predict the correct rows?

p=CAT
S=<Human Genome>

P <> S

Learned Index Structures

Researchers at Google using neural
networks to replace classical data
structures such as B-Trees, HashMaps,
and Bloom Filters

Train network to predict position of a data
point in the structure given its value

Compute the maximum error E = |predicted
position - actual position| among all points
in data structure. Then, narrow search to
within E of predicted value.

Kraska et. al. “The Case for Learned Index Structures”. SIGMOD 2018.

Suffix Array Search as a Prediction Task

Goal: Given a query string and a suffix array,
predict the suffix array position where the
suffix begins with that query string

ACTAG

00 01 11 00 10

Encode each base with 2 bits

00011100102 = 11410

Convert to base 10

Piecewise Linear Prediction Scheme

AA
AC

AG
AT

CA
CC

CG
CT

GA
GC

GG
GT

TA
TC

TG
TTPrefixes

Binary
Search
Range

Optimizing the Common Case
Keep track of not only maximum error but also
95th percentile of error distribution

Reduces search space by about an order of
magnitude in 95% of cases

Prediction Errors in Yeast

Performance Results

S
ec

on
ds

 p
er

 5
 m

ill
io

n
qu

er
ie

s

0

S
ec

on
ds

 p
er

 5
 m

ill
io

n
qu

er
ie

s

0.1% space overhead 10% space overhead

Ongoing Work - Better Functions

Piecewise linear: average error = 276.188 Linear regression: average error = 158.831

Suffix Array Position
Predicted Position

Quadratic: average error = 149.185 Lowess: average error = 13.747

Ongoing Work - Better Functions

Suffix Array Position
Predicted Position

Conclusion
SAPLING allows faster string searching than existing approaches
● Scales well with genome length and could be used for searching large

collections of genomes, e.g. metagenomics search
● Technique of treating data structure lookups as predictive function evaluation

has the potential to speed up many other genomic data structures

Future Work
● Optimize SA Prediction Function
● Support in-exact and exact string matching
● Allow variable length queries

Software Release
● Open Source: https://github.com/mkirsche/sapling

https://github.com/mkirsche/sapling

