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Introduction: Parallel Models
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PRAM (Parallel Random Access Machine)
• Algorithms formulated using ! processors for !

input items, analyzed w.r.t.:
• Work (total #ops by all processors)
• Depth (= time) (time steps till completion)

• Variants:
• Exclusive Read Exclusive Write (EREW)
• Concurrent Read Exclusive Write (CREW)
• Concurrent Read Concurrent Write (CRCW)

• Not realistic 

Shared-Memory Parallel
• Parallel processors
• Sequential memory
• Programming via threads/processes
• Limited number of processors and RAM 

possible
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Distributed Parallel Model
• Distributed Memory

• Can’t directly access memory at 
remote processors

• Explicit communication via 
messages (Message Passing 
Interface MPI)

• send / receive 
• all-to-all 
• (all-) reduce 
• prefix-sum

• Analysis with respect to:
• Input size !
• Number of processors "
• Latency #
• Bandwidth 1/&

Introduction: Parallel Models
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Introduction: Parallel Models
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Distributed Parallel Model
• Usage of large compute clusters 

and distributed memory required 
when the problem

a) Needs a large number of 
processors

b) Needs a large cumulative size of 
memory

• Memory Scalability:
• A problem of size ! requires "(!/%)

memory per processor
• Arrays and data are (equally) 

block distributed across p 
processors

• !/% elements per processor
• constant time lookups:

index_range(rank)
rank_of(global_index)
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Outline
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Introduction

Motivation: String Indexing

• Indexing is required for fast pattern searching & matching

• Structured texts are “easy” to index
• e.g. natural language, websites, documents, etc

• Genomic sequences: unstructured texts
ctgccagtgagattatcggcctatatgcacactttggactaggaactaaat

• Two major approaches:

1. Index target sequence by fixed size substrings: k-mer index 

2. Index all suffixes: suffix arrays, suffix trees, FM index
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Introduction

• Suffix Tree (ST)
• trie of all suffixes of a string
• fundamental and powerful 

indexing structure

• Suffix Array (SA)
• array of sorted suffixes
• represents leafs of ST

• Longest Common Prefix (LCP)
• length of prefix match between 

consecutive suffixes in SA

• Important Applications:
• Approximate pattern matching, finding 

of longest common substrings, all-pair 
maximal overlaps, data compression

8

S = mississippi$

i
mississippi$

p s
$

ppi$
ssi

$ ssippi$

ppi$

pi$

i$

sii

ppi$

ppi$

ssippi$

ssippi$

11 10 7 4 1 0 9 8 6 3 5 2

0 1 1 4 0 0 1 0 2 1 3

SA:

LCP:

ST:



Suffix Arrays and Trees

Contributions:

• Parallel Distributed Memory Construction of Suffix Array,

LCP Array, and Suffix Tree
• Indexing of Human Genome on 1024 Xeon cores in < 9.5s

• Scalable to large strings: !(#/%)memory per node

• Better theoretical complexity than prior distributed memory 

algorithms or available shared memory implementations

• Outperforms state-of-the-art in shared and distributed memory
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Experiments and Results
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2. Hybrid

1. k-mer sorting

Algorithm 1:Distributed Manber & Myers
Algorithm 2: Communication avoiding 

prefix-doubling

Hybrid: Introspectively switch between 
algorithms based on number 
of non-singleton buckets

Results SA Construction: Hybrid Algo1 + Algo2

K-mer sorting



Experiments and Results
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Method H 2G H 3G P 12G

divsufsort 424.5 586.4 X

mkESA (1) 586.6 1,123 X

mkESA (4) 462.6 759 X

cloudSACA (128) 40.6 X X

Our method (128) 16.3 22.1 142.6

Our method (1600) 3.5 4.8 14.8

Runtime (seconds) of different methods

Results SA Construction

Experimental System:
• 100 nodes: 2x 8 core Intel E5-2650
• 128 GB RAM per node
• QDR Infiniband
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Parallel Suffix Tree Construction

PRAM (n processor) ST Construction
• [Apostolico ‘88] CRCW  O(log n) time O(n2) space
• [Hariharan ‘94]  CRCW work optimal for constant alphabets
• à theoretical importance, (probably) not practical

Distributed Memory
• [Ghoting ‘09] Wavefront
• [Mansour ‘11] Elastic Range (ERA)
• [Comin ‘13] Parallel Continuous Flow (PCF)
• à quadratic worst-case complexity, !(#)memory per processor

PRAM from SA+LCP
• [Iliopoulos ’04] CREW O(log n) time O(n log n) work
• [Shun ’14] EREW optimal O(n) work O(log2n) time,

but O(n log n) work implementation
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Parallel Suffix Tree Construction
ST Construction from SA and LCP
• SA = leafs of ST
• LCP = internal nodes of ST
• Any internal node v of depth t

• defines a subtree of suffixes which share a 
prefix of length at least t

• LCP values for subtree range >= t
• if v has d children, d-1 values are = t
• LCP values at borders < t
• Parent of v is one of the two border items

• Determine parent for each node
for each SA[i]: 
• max(LCP[i], LCP[i+1])
for each LCP[i]:
• Find nearest smaller LCP[l] < LCP[i] to left l < i
• Find nearest smaller LCP[r] < LCP[i] to right r > I
• max(LCP[j], LCP[h])

=> All Nearest Smaller Values (ANSV)
14



Parallel Suffix Tree Construction

All Nearest Smaller Values
• For each element in an array A

• find nearest smaller:

• Well studied problem with parallel solutions
• however, with too restrictive assumptions

• Problem: which is the unique parent node?

T+

à Leftmost of equal value

> s



All Nearest Smaller Values Parallel Algorithm
• Distributed memory: n/p elements per processor

1. Sequentially find matches locally:
• Keep unmatched elements: bitonic sequence 

2. Allgather processor minimas !"
3. Determine sections to exchange based on (!$,!&,… ,!()&)
4. Send / Receive sections

• So that each processor sends/receives at most n/p elements

5. Solve unmatched elements in received sequences

6. Send solutions back to origin

All-Nearest-Smaller-Values
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Parallel Suffix Tree Construction

ST Construction from SA and LCP
• SA = leafs of ST
• LCP = internal nodes of ST

Algorithm steps
• Construct ST “bottom-up”
• Each node determines its parent

• Solve the gANSV problem on the LCP
• Combine results from left and right matches

• Inverse edges (i, parent(i)) and create 
internal nodes for each unique parent(i)

• Label each edge with its first character
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Experiments and Results
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Method System Cores Time

WaveFront IBM BG/L 1024 15 min

ERA 16x Intel 2-core nodes 32 13.7 min

PCF MareNostrum 172 7 min

Shun 4x 10 core Intel E7-8870 40 168 s

Shun 4x 18 core Intel E7-8870 72 146 s

Our method 4x 18 core Intel E7-8870 72 63 s

Our method 64 nodes: 2x   8 core Intel E5-2650 1024 9.5 s

Results SA + LCP + ST Construction

Construction Time for Human Genome

Experimental System:
• 100 nodes: 2x 8 core Intel E5-2650
• 128 GB RAM per node
• QDR Infiniband



Experiments and Results
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Results ST Construction

Construction for Pine Genome (12 GB)
Strong Scaling Suffix Tree



Summary

Parallel Distributed Memory Suffix Array, LCP Array, 

and Suffix Tree Construction

• Indexing of Human Genome on 1024 Xeon cores in < 9.5s

• Scalable to large strings: O(n/p) memory per node

• Better theoretical complexity than prior distributed memory 

algorithms or available shared memory implementations

• Outperforms state-of-the-art in shared and distributed memory

• Open Source C++ implementation: github.com/patflick/psac
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DESA: Background

Enhanced Suffix Arrays (ESA) [Abouelhoda ’04] [Fischer ’07]

• Space efficient virtual representation of Suffix Tree
• Consists of:

• Suffix Array
• LCP Array (+ virtual LCP interval tree)
• Child Table [Abouelhoda ’04] / RMQ over LCP [Fischer ’07]

• Forward-search query algorithms require random accesses into the string 
S at every step

• Possibly anywhere in [0, $]
• In distributed memory: prohibitively expensive

• Backward-search algorithms (e.g., FM-Index) also require many random 
accesses into the size $ data structures.

à For distributed memory, we need different data structures
à A “subtree” of size $/' should be represented and be efficiently 

query-able in O(n/p) memory
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DESA
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Distributed Enhanced Suffix Arrays
• Requirement:

• Subtree of size n/p should use O(n/p) memory and be 
efficiently query-able

• Key Ideas:
• Allow false-positives during traversal
• Branching characters can be pre-computed and stored

• Eliminate Random Reads of S
• For subtree of size !/#, there are $(!/#) branching characters

• Match only branching characters during top-down pattern 
matching

• Single string comparison at the end of the traversal



DESA: Results

dna proteins english sources dplb
esa_index 7.6 11.2 28.0 30.4 26.6
desa_index 6.4 9.7 19.1 20.0 15.7
desa_tl_index 6.0 5.8 14.5 14.7 10.1
sdsl::csa_wt 6.3 13.7 15.1 19.9 18.8
sdsl::csa_sada 74.9 72.2 65.9 94.1 97.9
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Query Time in !" per query

Results DESA Query
Scaling in Distributed Memory

System: 
Edison (Cray XC-30 Supercomputer)



Summary 
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DESA: Background
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DESA
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DESA top-down traversal
• Allow false-positives during 

traversal
• Only get child intervals by query 

character
• Don’t check whole edge label during 

traversal
• Single comparison at the end of the 

traversal
• Use Hierarchical Parallel Succinct 

RMQ [Flick ’15] [Fisher ‘09]

• Top Level Lookup Table (TL)
• Fixed q-mer offset lookup
• Skip up to q iterations
• Narrows the search interval



DESA getChild()
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DESA  getChild()
• Eliminate Random Reads of S
• Introduce Array !":

• Then string access becomes

• If query interval is local, then all 
required data is local

• RMQ, LCP, SA, and !"

# $ == &[&( ) + +] ?
⇒# $ == !" ) ?


