
Parallel Distributed Memory String Indexes
Efficient Construction and Querying

Patrick Flick & Srinivas Aluru
Computational Science and Engineering

Georgia Institute of Technology

1

In this talk…

2

Distributed
Construction of
Suffix Arrays and
LCP Arrays

All-Nearest-
Smaller-Values
and Distributed
Construction of
Suffix Trees

Distributed
Enhanced
Suffix Arrays

[SC ‘15]

[IPDPS ‘17]

Overview

[Under Review]

Very Short Intro to
Parallel and
Distributed
Computing

1

2

3

4

Introduction: Parallel Models

3

PRAM (Parallel Random Access Machine)
• Algorithms formulated using ! processors for !

input items, analyzed w.r.t.:
• Work (total #ops by all processors)
• Depth (= time) (time steps till completion)

• Variants:
• Exclusive Read Exclusive Write (EREW)
• Concurrent Read Exclusive Write (CREW)
• Concurrent Read Concurrent Write (CRCW)

• Not realistic

Shared-Memory Parallel
• Parallel processors
• Sequential memory
• Programming via threads/processes
• Limited number of processors and RAM

possible

CPU

RAM

CPU CPU CPU CPU

CPU

RAM

CPU CPU CPU CPU

Distributed Parallel Model
• Distributed Memory

• Can’t directly access memory at
remote processors

• Explicit communication via
messages (Message Passing
Interface MPI)

• send / receive
• all-to-all
• (all-) reduce
• prefix-sum

• Analysis with respect to:
• Input size !
• Number of processors "
• Latency #
• Bandwidth 1/&

Introduction: Parallel Models

4

CPU RAM

CPU RAM

CPURAM

CPURAM

Network

'(# + &*)

'(log " (# + &*))

Introduction: Parallel Models

5

11 10 7 4 1 0 9 8 6 3 5 2SA:

m i s s i s s i p p i $

5 4 11 9 3 10 8 2 7 6 1 0ISA:

S:

0 1 1 4 0 0 1 0 2 1 3LCP:

P0 P1 P2 P3

n/p n/p n/p n/p

Distributed Parallel Model
• Usage of large compute clusters

and distributed memory required
when the problem

a) Needs a large number of
processors

b) Needs a large cumulative size of
memory

• Memory Scalability:
• A problem of size ! requires "(!/%)

memory per processor
• Arrays and data are (equally)

block distributed across p
processors

• !/% elements per processor
• constant time lookups:

index_range(rank)
rank_of(global_index)

CPU RAM

CPU RAM

CPURAM

CPURAM

Network

Outline

6

Distributed
Construction of
Suffix Arrays and
LCP Arrays

All-Nearest-
Smaller-Values
and Distributed
Construction of
Suffix Trees

Distributed
Enhanced
Suffix Arrays

[SC ‘15]

[IPDPS ‘17]

[Under Review]

Very Short Intro to
Parallel and
Distributed
Computing

1

2

3

4

Introduction

Motivation: String Indexing

• Indexing is required for fast pattern searching & matching

• Structured texts are “easy” to index
• e.g. natural language, websites, documents, etc

• Genomic sequences: unstructured texts
ctgccagtgagattatcggcctatatgcacactttggactaggaactaaat

• Two major approaches:

1. Index target sequence by fixed size substrings: k-mer index

2. Index all suffixes: suffix arrays, suffix trees, FM index

7

Introduction

• Suffix Tree (ST)
• trie of all suffixes of a string
• fundamental and powerful

indexing structure

• Suffix Array (SA)
• array of sorted suffixes
• represents leafs of ST

• Longest Common Prefix (LCP)
• length of prefix match between

consecutive suffixes in SA

• Important Applications:
• Approximate pattern matching, finding

of longest common substrings, all-pair
maximal overlaps, data compression

8

S = mississippi$

i
mississippi$

p s
$

ppi$
ssi

$ ssippi$

ppi$

pi$

i$

sii

ppi$

ppi$

ssippi$

ssippi$

11 10 7 4 1 0 9 8 6 3 5 2

0 1 1 4 0 0 1 0 2 1 3

SA:

LCP:

ST:

Suffix Arrays and Trees

Contributions:

• Parallel Distributed Memory Construction of Suffix Array,

LCP Array, and Suffix Tree
• Indexing of Human Genome on 1024 Xeon cores in < 9.5s

• Scalable to large strings: !(#/%)memory per node

• Better theoretical complexity than prior distributed memory

algorithms or available shared memory implementations

• Outperforms state-of-the-art in shared and distributed memory

9

S SA + LCP ST 7.5s 1.7s

[SC’15] [IPDPS’17]

Experiments and Results

10

2. Hybrid

1. k-mer sorting

Algorithm 1:Distributed Manber & Myers
Algorithm 2: Communication avoiding

prefix-doubling

Hybrid: Introspectively switch between
algorithms based on number
of non-singleton buckets

Results SA Construction: Hybrid Algo1 + Algo2

K-mer sorting

Experiments and Results

11

Method H 2G H 3G P 12G

divsufsort 424.5 586.4 X

mkESA (1) 586.6 1,123 X

mkESA (4) 462.6 759 X

cloudSACA (128) 40.6 X X

Our method (128) 16.3 22.1 142.6

Our method (1600) 3.5 4.8 14.8

Runtime (seconds) of different methods

Results SA Construction

Experimental System:
• 100 nodes: 2x 8 core Intel E5-2650
• 128 GB RAM per node
• QDR Infiniband

Outline

12

Distributed
Construction of
Suffix Arrays and
LCP Arrays

All-Nearest-
Smaller-Values
and Distributed
Construction of
Suffix Trees

Distributed
Enhanced
Suffix Arrays

[SC ‘15]

[IPDPS ‘17]

[Under Review]

Very Short Intro to
Parallel and
Distributed
Computing

1

2

3

4

Parallel Suffix Tree Construction

PRAM (n processor) ST Construction
• [Apostolico ‘88] CRCW O(log n) time O(n2) space
• [Hariharan ‘94] CRCW work optimal for constant alphabets
• à theoretical importance, (probably) not practical

Distributed Memory
• [Ghoting ‘09] Wavefront
• [Mansour ‘11] Elastic Range (ERA)
• [Comin ‘13] Parallel Continuous Flow (PCF)
• à quadratic worst-case complexity, !(#)memory per processor

PRAM from SA+LCP
• [Iliopoulos ’04] CREW O(log n) time O(n log n) work
• [Shun ’14] EREW optimal O(n) work O(log2n) time,

but O(n log n) work implementation

13

Parallel Suffix Tree Construction
ST Construction from SA and LCP
• SA = leafs of ST
• LCP = internal nodes of ST
• Any internal node v of depth t

• defines a subtree of suffixes which share a
prefix of length at least t

• LCP values for subtree range >= t
• if v has d children, d-1 values are = t
• LCP values at borders < t
• Parent of v is one of the two border items

• Determine parent for each node
for each SA[i]:
• max(LCP[i], LCP[i+1])
for each LCP[i]:
• Find nearest smaller LCP[l] < LCP[i] to left l < i
• Find nearest smaller LCP[r] < LCP[i] to right r > I
• max(LCP[j], LCP[h])

=> All Nearest Smaller Values (ANSV)
14

Parallel Suffix Tree Construction

All Nearest Smaller Values
• For each element in an array A

• find nearest smaller:

• Well studied problem with parallel solutions
• however, with too restrictive assumptions

• Problem: which is the unique parent node?

T+

à Leftmost of equal value

> s

All Nearest Smaller Values Parallel Algorithm
• Distributed memory: n/p elements per processor

1. Sequentially find matches locally:
• Keep unmatched elements: bitonic sequence

2. Allgather processor minimas !"
3. Determine sections to exchange based on (!$,!&,… ,!()&)
4. Send / Receive sections

• So that each processor sends/receives at most n/p elements

5. Solve unmatched elements in received sequences

6. Send solutions back to origin

All-Nearest-Smaller-Values

16

min

+$ +& +, +-

.(/(+ 1) time

2 34!! = log(91)

Complexity

Parallel Suffix Tree Construction

ST Construction from SA and LCP
• SA = leafs of ST
• LCP = internal nodes of ST

Algorithm steps
• Construct ST “bottom-up”
• Each node determines its parent

• Solve the gANSV problem on the LCP
• Combine results from left and right matches

• Inverse edges (i, parent(i)) and create
internal nodes for each unique parent(i)

• Label each edge with its first character

18

Experiments and Results

19

Method System Cores Time

WaveFront IBM BG/L 1024 15 min

ERA 16x Intel 2-core nodes 32 13.7 min

PCF MareNostrum 172 7 min

Shun 4x 10 core Intel E7-8870 40 168 s

Shun 4x 18 core Intel E7-8870 72 146 s

Our method 4x 18 core Intel E7-8870 72 63 s

Our method 64 nodes: 2x 8 core Intel E5-2650 1024 9.5 s

Results SA + LCP + ST Construction

Construction Time for Human Genome

Experimental System:
• 100 nodes: 2x 8 core Intel E5-2650
• 128 GB RAM per node
• QDR Infiniband

Experiments and Results

20

Results ST Construction

Construction for Pine Genome (12 GB)
Strong Scaling Suffix Tree

Summary

Parallel Distributed Memory Suffix Array, LCP Array,

and Suffix Tree Construction

• Indexing of Human Genome on 1024 Xeon cores in < 9.5s

• Scalable to large strings: O(n/p) memory per node

• Better theoretical complexity than prior distributed memory

algorithms or available shared memory implementations

• Outperforms state-of-the-art in shared and distributed memory

• Open Source C++ implementation: github.com/patflick/psac

21

S SA + LCP ST 7.5s 1.7s

[SC’15] [IPDPS’17]

Outline

22

Distributed
Construction of
Suffix Arrays and
LCP Arrays

All-Nearest-
Smaller-Values
and Distributed
Construction of
Suffix Trees

Distributed
Enhanced
Suffix Arrays

[SC ‘15]

[IPDPS ‘17]

[Under Review]

Very Short Intro to
Parallel and
Distributed
Computing

1

2

3

4

DESA: Background

Enhanced Suffix Arrays (ESA) [Abouelhoda ’04] [Fischer ’07]

• Space efficient virtual representation of Suffix Tree
• Consists of:

• Suffix Array
• LCP Array (+ virtual LCP interval tree)
• Child Table [Abouelhoda ’04] / RMQ over LCP [Fischer ’07]

• Forward-search query algorithms require random accesses into the string
S at every step

• Possibly anywhere in [0, $]
• In distributed memory: prohibitively expensive

• Backward-search algorithms (e.g., FM-Index) also require many random
accesses into the size $ data structures.

à For distributed memory, we need different data structures
à A “subtree” of size $/' should be represented and be efficiently

query-able in O(n/p) memory

23

DESA

24

Distributed Enhanced Suffix Arrays
• Requirement:

• Subtree of size n/p should use O(n/p) memory and be
efficiently query-able

• Key Ideas:
• Allow false-positives during traversal
• Branching characters can be pre-computed and stored

• Eliminate Random Reads of S
• For subtree of size !/#, there are $(!/#) branching characters

• Match only branching characters during top-down pattern
matching

• Single string comparison at the end of the traversal

DESA: Results

dna proteins english sources dplb
esa_index 7.6 11.2 28.0 30.4 26.6
desa_index 6.4 9.7 19.1 20.0 15.7
desa_tl_index 6.0 5.8 14.5 14.7 10.1
sdsl::csa_wt 6.3 13.7 15.1 19.9 18.8
sdsl::csa_sada 74.9 72.2 65.9 94.1 97.9

25

Query Time in !" per query

Results DESA Query
Scaling in Distributed Memory

System:
Edison (Cray XC-30 Supercomputer)

Summary

26

Srinivas Aluru
aluru@cc.gatech.edu

Acknowledgements

Topics covered:

Advisor

FundingQuestions?

Contact

Patrick Flick
patrick.flick@gatech.edu
patflick.github.io

github.com/patflick/psac

Contact

Software

mailto:aluru@cc.gatech.edu
mailto:patrick.flick@gatech.edu
https://patflick.github.io/

DESA: Background

28

S = mississippi$
P = issip

i
mississippi$

p s
$

ppi$
ssi

$ ssippi$

ppi$

pi$

i$

sii

ppi$

ppi$

ssippi$

ssippi$

11 10 7 4 1 0 9 8 6 3 5 2

0 1 1 4 0 0 1 0 2 1 3

SA:

LCP:

ST:

[0,n), c=0

[1,5), c=1
$ i m p s

ESA top-down traversal

! " == $[$& ' + "] ?

Random Accesses into the String S

DESA

29

DESA top-down traversal
• Allow false-positives during

traversal
• Only get child intervals by query

character
• Don’t check whole edge label during

traversal
• Single comparison at the end of the

traversal
• Use Hierarchical Parallel Succinct

RMQ [Flick ’15] [Fisher ‘09]

• Top Level Lookup Table (TL)
• Fixed q-mer offset lookup
• Skip up to q iterations
• Narrows the search interval

DESA getChild()

30

DESA getChild()
• Eliminate Random Reads of S
• Introduce Array !":

• Then string access becomes

• If query interval is local, then all
required data is local

• RMQ, LCP, SA, and !"

$ == &[&() + +] ?
⇒# $ == !") ?

