
Suffix Trees:
A Natural History

Martin Farach-Colton
Rutgers University

What’s in this talk?
The history and gossip of suffix trees

Yale 1970

Peter Weiner helped start the
Yale CS Department
• Like all administrators, he was

short on research time

• So he took a sabbatical to solve

one big problem

What did big problems look
like in the early 70s?
• What is O(n) vs what is O(n log n)?

• Planarity testing, strongly

connected components, etc.

• Is anything Ω(n log n)???

Repeated strings

Given a string S of length n, what is longest
substring that occurs twice?
• Is this nlogn-time or linear?

Karp-Miller-Rosenberg solves this in O(n log n)

Knuth conjectured that the bound is Ω(n log n)
• Knuth is right in many models

• Lower bound based on the element distinctness problem

So even for first major open problem in
stringology, we need to focus on the alphabet!

Karp Miller Rosenberg Main Idea

Find a fingerprint for substrings
• Two substrings have the same fingerprint iff they they are

equal

Not all fingerprints
• Substrings starting at any position

• Of any length a power of 2

• So now we can compare any two substrings in log time

So we need to compute O(n log n) fingerprints
• KMR show how to compute them in O(n log n) time

Karp-Miller-Rosenberg: Building Blocks

Replace-by-Rank (RbR)
• Given a set S, we define

• Where R(S) replaces every character in S by its rank

‣R(‘aabbadaccaa’) = ‘00110302200’

• Notice: First call to RbR has runtime that depends on the
sortability of S

Bit Concat (a.k.a chunking):

R : Σn → [n]n

∀x, y ∈ Σ, ⟨x, y⟩ = x |Σ | + y

e.g. ⟨3,2⟩ = 3 × 4 + 2 = 14

At each j, for length 2i+1 we first compute:

Then we Replace by rank the new fingerprints
• So that the number of bits doesn’t blow up

Karp-Miller-Rosenberg: Fingerprints

2i 2i

α β

j

⟨α, β⟩

Bonus Points

Reducing the number of bits:
• In Karp-Miller-Rosenberg, it’s Replace by Rank

• In Karp-Rabin, it’s modding by a random prime

Karp-Miller-Rosenberg: Fingerprints, Example
S0 = mississippippiss
S′�0 = R(S0) = 1 ⋅ 0 ⋅ 3 ⋅ 3 ⋅ 0 ⋅ 3 ⋅ 3 ⋅ 0 ⋅ 2 ⋅ 2 ⋅ 0 ⋅ 2 ⋅ 2 ⋅ 0 ⋅ 3 ⋅ 3
S1 = ⟨1,0⟩ ⋅ ⟨0,3⟩ ⋅ ⟨3,3⟩ ⋅ ⟨3,0⟩ ⋅ ⟨0,3⟩ ⋅ ⟨3,3⟩ ⋅ ⟨3,0⟩ ⋅ ⟨0,2⟩ ⋅ ⟨2,2⟩ ⋅ ⟨2,0⟩ ⋅ ⟨0,2⟩ ⋅ ⟨2,2⟩ ⋅ ⟨2,0⟩ ⋅ ⟨0,3⟩ ⋅ ⟨3,3⟩ ⋅ ⟨3,− ⟩

S2 = R(S′�1) = 2 ⋅ 1 ⋅ 6 ⋅ 5 ⋅ 1 ⋅ 6 ⋅ 5 ⋅ 0 ⋅ 4 ⋅ 3 ⋅ 0 ⋅ 4 ⋅ 3 ⋅ 1 ⋅ 6 ⋅ 7

S′�2 = ⟨2,6⟩ ⋅ ⟨1,5⟩ ⋅ ⟨6,1⟩ ⋅ ⟨5,6⟩ ⋅ ⟨1,5⟩ ⋅ ⟨6,0⟩ ⋅ ⟨5,4⟩ ⋅ ⟨0,3⟩ ⋅ ⟨4,0⟩ ⋅ ⟨3,4⟩ ⋅ ⟨0,3⟩ ⋅ ⟨4,1⟩ ⋅ ⟨3,6⟩ ⋅ ⟨1,7⟩ ⋅ ⟨6,− ⟩ ⋅ ⟨7,− ⟩

S3 = R(S′�2) = 3 ⋅ 1 ⋅ 11 ⋅ 9 ⋅ 1 ⋅ 10 ⋅ 8 ⋅ 0 ⋅ 6 ⋅ 4 ⋅ 0 ⋅ 7 ⋅ 5 ⋅ 2 ⋅ 12 ⋅ 13

S′�3 = ⟨3,1⟩ ⋅ ⟨1,10⟩ ⋅ ⟨11,8⟩ ⋅ ⟨9,0⟩ ⋅ ⟨1,6⟩ ⋅ ⟨10,4⟩ ⋅ ⟨8,0⟩ ⋅ ⟨0,7⟩ ⋅ ⟨6,5⟩ ⋅ ⟨4,2⟩ ⋅ ⟨0,12⟩ ⋅ ⟨7,13⟩ ⋅ ⟨5,− ⟩ ⋅ ⟨2,− ⟩ ⋅ ⟨12,− ⟩ ⋅ ⟨13,− ⟩

S4 = R(S′�3) = 5 ⋅ 3 ⋅ 13 ⋅ 11 ⋅ 2 ⋅ 12 ⋅ 10 ⋅ 0 ⋅ 8 ⋅ 6 ⋅ 1 ⋅ 9 ⋅ 7 ⋅ 4 ⋅ 14 ⋅ 15

⋮
Slog n = R(S′�log n − 1) = ⋯

KMR

Total time: O(Sort(Σ) + n log n) = O(n log n)
Fun facts:
• Replace-by-rank preserves lexicographic order

• Sort by longest fingerprints to get the suffix sorting

Suffix sorting: the sorted order of all suffixes of
a string
• This will come back later

KMR back in the day

KMR used to be described with a big table
• It’s still O(n log n)

What does the big table do for you?
• It lets you compute KMR in parallel

Remember PRAMs?
• They were a wonderful computational model that

theoreticians abandoned because they got teased by
bullies

So now, the challenge

KMR solves the problem in O(n log n)
Knuth conjectures that it’s Ω(n log n)
• Even for binary alphabets

So it’s time for Weiner to do his thing
• One year later: O(n) time for finding longest repeated

string in a binary string.

• Knuth declares it the “Algorithm of the Year”

• It’s not trivial to see it now, but his paper invented the

suffix tree

Peter Weiner disappears

Right after he proves his big result:
• Weiner leaves academia

• Starts Interactive Systems Corporation

• Which owned Unix for a while

• So all hackers hated it/him

Peter Weiner Reappears!

I cite Weiner for years, of course and then:
• July 19, 2012, he friends me (or whatever) on LinkedIn

• This is the moment I realized that LinkedIn has some
actual value.

• This value-added experience was never to be repeated.

Peter Weiner disappears

We talked that day. We emailed that day:

Vaughan Pratt’s notes:

Vaughan Pratt’s notes:

Good news: the whole
alphabet thing was

thought about from the
beginning

Bad news: Had my
paper “Optimal Suffix
Tree Construction with
Large Alphabet” been

scooped? By 24
years???

Vaughan Pratt’s notes:

Best news: No, I was
not scooped

Years Passed

Suffix trees:
• Right to left

• Left to right

• Real time

• Simpler

• etc.

If you want to know
the history of those
results, ask the authors
of those papers…

Building a Suffix
Tree: The Large
Alphabet Edition

Outline the algorithm

Step 1: Recursively sort odd suffixes.
• How? And how is it recursive? A recursive step must

sort every suffix! We’ll get to that.

Step 2: Sort even suffixes.
• Yikes. We can’t afford to do this recursively.

• If we do, then we get T(n) ≥ 2T(n/2) + Ω(n)

• And we get an Ω(n log n) algorithm.

• So we can only afford linear time for this step.

Step 3: Merge!
• How?

• Can only afford linear time for this step.

Before we move on:

A word about
Suffix Arrays

Suffix Trees and Succinct Suffix Trees

String Ω(Sort(Σ, n))

Suffix tree
O(n)

Suffix array
O(n)

Suffix sort

Suffix Trees and Succinct Suffix Trees

String Ω(Sort(Σ, n))

Suffix tree
O(n)

Suffix array
O(n)

Suffix sort

More or less succinct

versions of

same data structure

Suffix Trees and Succinct Suffix Trees

String Ω(Sort(Σ, n))

Suffix tree
O(n)

Suffix array
O(n)

Suffix sort

More or less succinct

versions of

same data structure

And fastest suffix

array algo is

simplification of

suffix tree algo

Suffix Trees and Succinct Suffix Trees

String Ω(Sort(Σ, n))

Suffix tree
O(n)

Suffix array
O(n)

Suffix sort

More or less succinct

versions of

same data structure

And fastest suffix

array algo is

simplification of

suffix tree algo

Example: Mississippi$

Mississippi$

sissippi$

sippi$

i$
pi$
ppi$

ssissippi$
ississippi$

issippi$
ssippi$

ippi$

$

Mississippi$

sissippi$
sippi$

i$

pi$
ppi$

ssissippi$

ississippi$
issippi$

ssippi$

ippi$

$

{

{
8 2 5 11 1 9 10 6 3 7 4 128 5 11 1 9 10 6 3 7 4 122

1 2 3 4 5 6 7 8 9 10 11 12
Mississippi$

How fast can we sort?

Sorting suffixes is no faster than sorting
characters.

This talk: Matching this lower bound

Radix Sort Review

Recall that Radix Sort proceeds in steps:
• Lexicographically sort the last i characters of each string.

• Stably sort by preceding character. Now strings are

lexicographically sorted by last i+1 characters.

It’s not just for strings:
• Radix sort means you can sort n numbers in range [nO(1)]

in O(n) time

sorte
d

sorte
d

Suffix Sorting

Main idea: Combine Merge Sort with Radix Sort.

Tools:
• Replace by Rank

• Radix Step

• Chunking

So it’s related to KMR
• But we need to figure out how to avoid computing so

many fingerprints

✔
✔
✔

Exploring Radix Step

What happens if we sort only some suffixes?
• Say, suffixes 4, 8, and 23?

• Now we do one radix step

What happens we you add one character to the
front of a suffix?
• It becomes the previous suffix

• S[3] · suffix(4) = suffix(3)

• S[7] · suffix(8) = suffix(7)

• S[22] · suffix(23) = suffix(22)

• So one radix step of sorted order of suffixes 4, 8 and 23
gives sorted order of suffixes 3, 7 and 22.

Example: sorting odd suffixes of 214414413315

214414413315

4414413315

413315

14413315

3315

15

214414413315

4414413315
413315

14413315

3315

15

214414413315
14414413315
4414413315

413315
4413315
14413315

13315

414413315

3315
315
15
5

25 1111 11 99 37 73

Odd Suffixes

Example: 214414413315

214414413315

4414413315
413315

14413315

3315

15

Even Suffixes

5
14414413315
4413315

414413315

13315

315

5

14414413315

4413315
414413315

13315

315

88 10 610 6 4 124 1252

Where are we on the algorithm?

Step 1: Recursively sort odd suffixes.
• How?

Step 2: Sort even suffixes in linear time.
• By Radix Step!

Step 3: Merge!

8 2 5 11 1 9 10 6 3 7 4 128 5 11 1 9 10 6 3 7 4 122

?

25 1111 11 99 37 73

Odd Suffixes Even Suffixes
88 10 610 6 4 124 1252? ✔

Chunking + Recursion: I

Observation:
• The order of the odd suffixes of

• is computable from the order of all suffixes of

• Since chunking preserves lexicographic ordering.

S′� = (⟨s1, s2⟩, ⟨s3, s4⟩, …⟨sn − 1, sn ⟩)

S= (s1, s2…sn)

Example: 214414413315

8 2 5 11 1 93 6 5 4 21

214414413315

4414413315
413315

14413315

3315

15
〈21〉〈44〉〈14〉〈41〉〈33〉〈15〉
〈44〉〈14〉〈41〉〈33〉〈15〉
〈14〉〈41〉〈33〉〈15〉
〈41〉〈33〉〈15〉
〈33〉〈15〉
〈15〉

25 1111 11 99 37 73

17 36 12 33 27 13

36 12 33 27 13

12 33 27 13

33 27 13
27 13

13
17 36 12 33 27 13
36 12 33 27 13
12 33 27 13
33 27 13
27 13
13

3 bits per character

treat as base 8

2x-1

Chunking + Recursion: II

Chunking+Range Reduction = Recursion
• Input is in [n]n.

• Chunked Input is in [n2]n/2.

• Replace-by-Rank Chunking is in [n/2]n/2.

• So now problem instance is half the size and we can

recurse.

Example: 214414413315

8 2 5 11 1 93 6 5 4 21

214414413315

4414413315
413315

14413315

3315

15
〈21〉〈44〉〈14〉〈41〉〈33〉〈15〉
〈44〉〈14〉〈41〉〈33〉〈15〉
〈14〉〈41〉〈33〉〈15〉
〈41〉〈33〉〈15〉
〈33〉〈15〉
〈15〉

25 1111 11 99 37 73

3 6 1 5 4 2

6 1 5 4 2

1 5 4 2

5 4 2
4 2

2
3 6 1 5 4 2
6 1 5 4 2
1 5 4 2
5 4 2
4 2
2

3 bits per character

treat as base 8

2x-1

<14> 1
<15> 2

<21> 3
<33> 4

<41> 5
<44> 6

Suffix Sorting

Step 1: Chunk + Range Reduction. T(n/2)
• Recurse on new string.

• Get sorted order of odd suffixes.

Step 2: Radix Step. (Not 2nd Recursion!). O(n)
• Get sorted order of even suffixes.

Step 3: Merge!
• We still don’t know how to do this.

The Trouble with Merging

Know how the odd suffixes compare.
Know how the even suffixes compare.
No idea how odd & even compare!
• And comparing them character by character takes O(n)

• For a total of O(n2)

The difference between 3 and 2

It’s possible to merge the lists.
• By F ’97 “unintuitive” algorithm.

But Kärkkäinen & Sanders showed the elegant
way to merge.
• They complicate the recursion

• It’s not too bad

• And it make merging easy.

I modified their algorithm to make merging even
easier.

Mod 3 Recursion

Given a string

Let

Let

Let O12 be order of suffixes ≡ 1 or 2 (mod 3).
• You get this recursively from sorting the suffixes of S1S2

S= (s1, s2, …, sn)

S1 = (⟨s1, s2, s3⟩, ⟨s4, s5, s6⟩…, ⟨sn − 2, sn − 1, sn ⟩)

S2 = (⟨s2, s3, s4⟩, ⟨s5, s6, s7⟩…, ⟨sn − 1, sn , $⟩)

Example: 214414413315

〈214〉〈414〉〈413〉〈315〉
〈144〉〈144〉〈133〉〈155〉 〈214〉〈414〉〈413〉〈315〉〈144〉〈144〉〈133〉〈155〉 47652213

47652213
7652213
652213
52213
2213
213
13
3

213

47652213

7652213
652213
52213

2213

13

3
3(x-4)-1 x>4

3x-2 o/w

8 2 5 11 1 9 10 6 3 7 4 128 115 91 10 6 3 7 4 122

8 2 5 11 17 6 8 1 945 93 92

8 2 5 11 18 5 11 1 9102 97 94O12

1 2 3 4 5 6 7 8

1 4 7 10 2 5 8 11

Radix Step x 2

We have O12 from the recursion.
One Radix Step gives us O01
• Radix stepping a 1 suffix gives a 0 suffix.

• Radix stepping a 2 suffix gives a 1 suffix.

Another Radix Step gives us O02
Each suffix pair is now comparable.
Each suffix appears in two lists.

Example: 214414413315

8 2 5 11 18 5 11 1 9102 97 94O12

214414413315

14414413315

414413315

14413315

413315

13315

315

15

5

214414413315

4414413315

414413315

4413315

413315

3315

315

5

214414413315

4414413315

414413315
4413315

413315
3315
315

8 2 5 11 11 9 6 3 9710 94 912O01

8 2 5 11 18 5 11 9 962 93 912O02

Merging... at last!

An example is worth a thousand words...

Example: 214414413315

8 2 5 11 18 5 11 1 9102 97 94O12

8 2 5 11 11 9 6 3 9710 94 912O01

8 2 5 11 18 5 11 9 962 93 912O02

Example: 214414413315

8 2 5 11 18 5 11 1 9102 97 94O12

8 2 5 11 11 9 6 3 9710 94 912O01

8 2 5 11 18 5 11 9 962 93 912O02

8 2 5 11 1 9 10 6 3 7 4 12118 5 1 9 10 6 3 7 4 122

Example: 214414413315

2 5 11 15 11 1 9102 97 94O12

8 2 5 11 11 9 6 3 9710 94 912O01

2 5 11 15 11 9 962 93 912O02

8 2 5 11 1 9 10 6 3 7 4 12118 5 1 9 10 6 3 7 4 122

Example: 214414413315

2 5 11 1115 1 9102 97 94

8 2 5 11 11 9 6 3 9710 94 912

2 5 11 1115 9 962 93 912

8 2 5 11 1 9 10 6 3 7 4 12118 5 1 9 10 6 3 7 4 122

O12

O01

O02

Example: 214414413315

11 910 97 94

8 2 5 11 11 9 6 3 9710 94 912

19 96 93 912

8 2 5 11 1 9 10 6 3 7 4 12118 5 1 9 10 6 3 7 4 122

O12

O01

O02

Example: 214414413315

11 910 97 94

8 2 5 11 11 9 6 3 9710 94 912

19 96 93 912

8 2 5 11 1 9 10 6 3 7 4 12118 5 1 9 10 6 3 7 4 122

O12

O01

O02

Example: 214414413315

910 97 94

2 5 11 19 6 3 9710 94 912

19 96 93 912

8 2 5 11 1 9 10 6 3 7 4 12118 5 1 9 10 6 3 7 4 122

etc.

O12

O01

O02

Total time

T(n) to sort suffix of strings in [n]n
T(n) = recursion + 2*radix + merging
T(n) = O(n)+T(2n/3) + O(n) + O(n)
T(n) = O(n)

Total time

The initial Replace by Rank step to get a general
string in Σn into the integer alphabet -- [n]n --is
the bottleneck.
• So this algorithm is optimal for any alphabet.

• Or is it? More in a minute.

So why did we
want to sort

suffixes?

LCP & Suffix Arrays

1 1 0 0 1 0 13 2 04
8 2 5 11 1 9 10 6 3 7 4 128 5 11 1 9 10 6 3 7 4 122

Mississippi$
1 2 3 4 5 6 7 8 9 10 11 12

Combine two arrays:
• Suffix sorting array

• Array of longest common prefixes of adjacent suffixes

This is called a Suffix Array
• Manber & Myers ’90

• It is the most popular succinct version of a suffix tree

Time to go from sorted suffixes to suffix tree

Computing LCPs: O(n)
• Kasai, Lee, Arimura, Arikawa & Park CPM01

Suffix Array to Standard Suffix Tree: O(n)
• Via Cartesian Tree construction

• Vuillemin ‘80

Suffix Tree Optimality

If you are using Suffix Tree as a trie, then each
node must be sorted, and the construction is
optimal.
If you are using Suffix Tree + LCAs, then the
order of children is irrelevant.
• The children of each node can be in any order, and it

need not even be consistent between nodes.

Suffix Tree Optimality

Alphabets matter:
• For small integers, construction is already O(n), so this is

optimal, even for Scrambled Suffix Trees.

• In algebraic decision tree model, suffix trees have a lower

bound from element uniqueness (depends on degree of
root) so we have optimal algorithm.

• For large integers (word model of computation), lower
bound is linear, upper bound is super-linear.

Open Problem

Close the gap in the time for building a large-
alphabet suffix tree, when child order is
irrelevant.

Related to Deterministic Hashing Open
Problem:
• Given n large integers, can you map them to small

integers (poly n) in linear time in the word model?

To be clear

Today’s construction is optimal for sorted suffix
trees

What about unsorted suffix trees?

One last thing…

What’s Peter Weiner up to now?

He’s retired, and has a new career as a head-
shot photographer

What’s Peter up to now?

He’s retired, and has a new career as a head-
shot photographer

What’s Peter up to now?

He’s retired, and has a new career as a head-
shot photographer

What’s Peter up to now?

He’s retired, and has a new career as a head-
shot photographer

What’s Peter up to now?

He’s retired, and has a new career as a head-
shot photographer

What’s Peter up to now?

He’s retired, and has a new career as a head-
shot photographer

