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What’s in this talk?
The history and gossip of suffix trees



Yale 1970

Peter Weiner helped start the 
Yale CS Department 
• Like all administrators, he was 

short on research time

• So he took a sabbatical to solve 

one big problem


What did big problems look 
like in the early 70s? 
• What is O(n) vs what is O(n log n)?

• Planarity testing, strongly 

connected components, etc.

• Is anything Ω(n log n)???



Repeated strings

Given a string S of length n, what is longest 
substring that occurs twice? 
• Is this nlogn-time or linear?


Karp-Miller-Rosenberg solves this in O(n log n) 

Knuth conjectured that the bound is Ω(n log n) 
• Knuth is right in many models

• Lower bound based on the element distinctness problem


So even for first major open problem in 
stringology, we need to focus on the alphabet!



Karp Miller Rosenberg Main Idea

Find a fingerprint for substrings 
• Two substrings have the same fingerprint iff they they are 

equal


Not all fingerprints 
• Substrings starting at any position

• Of any length a power of 2

• So now we can compare any two substrings in log time


So we need to compute O(n log n) fingerprints 
• KMR show how to compute them in O(n log n) time



Karp-Miller-Rosenberg: Building Blocks

Replace-by-Rank (RbR) 
• Given a set S, we define


• Where R(S) replaces every character in S by its rank

‣R(‘aabbadaccaa’) = ‘00110302200’ 

• Notice: First call to RbR has runtime that depends on the 
sortability of S


Bit Concat (a.k.a chunking):

R : Σn → [n ]n

∀x, y ∈ Σ, ⟨x, y⟩ = x |Σ | + y

e.g. ⟨3,2⟩ = 3 × 4 + 2 = 14



At each  j, for length 2i+1 we first compute: 

Then we Replace by rank the new fingerprints 
• So that the number of bits doesn’t blow up

Karp-Miller-Rosenberg: Fingerprints

2i 2i

α β

j

⟨α, β⟩



Bonus Points

Reducing the number of bits: 
• In Karp-Miller-Rosenberg, it’s Replace by Rank

• In Karp-Rabin, it’s modding by a random prime



Karp-Miller-Rosenberg: Fingerprints, Example
S0 = mississippippiss
S′�0 = R(S0) = 1 ⋅ 0 ⋅ 3 ⋅ 3 ⋅ 0 ⋅ 3 ⋅ 3 ⋅ 0 ⋅ 2 ⋅ 2 ⋅ 0 ⋅ 2 ⋅ 2 ⋅ 0 ⋅ 3 ⋅ 3
S1 = ⟨1,0⟩ ⋅ ⟨0,3⟩ ⋅ ⟨3,3⟩ ⋅ ⟨3,0⟩ ⋅ ⟨0,3⟩ ⋅ ⟨3,3⟩ ⋅ ⟨3,0⟩ ⋅ ⟨0,2⟩ ⋅ ⟨2,2⟩ ⋅ ⟨2,0⟩ ⋅ ⟨0,2⟩ ⋅ ⟨2,2⟩ ⋅ ⟨2,0⟩ ⋅ ⟨0,3⟩ ⋅ ⟨3,3⟩ ⋅ ⟨3,− ⟩

S2 = R(S′�1) = 2 ⋅ 1 ⋅ 6 ⋅ 5 ⋅ 1 ⋅ 6 ⋅ 5 ⋅ 0 ⋅ 4 ⋅ 3 ⋅ 0 ⋅ 4 ⋅ 3 ⋅ 1 ⋅ 6 ⋅ 7

S′�2 = ⟨2,6⟩ ⋅ ⟨1,5⟩ ⋅ ⟨6,1⟩ ⋅ ⟨5,6⟩ ⋅ ⟨1,5⟩ ⋅ ⟨6,0⟩ ⋅ ⟨5,4⟩ ⋅ ⟨0,3⟩ ⋅ ⟨4,0⟩ ⋅ ⟨3,4⟩ ⋅ ⟨0,3⟩ ⋅ ⟨4,1⟩ ⋅ ⟨3,6⟩ ⋅ ⟨1,7⟩ ⋅ ⟨6,− ⟩ ⋅ ⟨7,− ⟩

S3 = R(S′�2) = 3 ⋅ 1 ⋅ 11 ⋅ 9 ⋅ 1 ⋅ 10 ⋅ 8 ⋅ 0 ⋅ 6 ⋅ 4 ⋅ 0 ⋅ 7 ⋅ 5 ⋅ 2 ⋅ 12 ⋅ 13

S′�3 = ⟨3,1⟩ ⋅ ⟨1,10⟩ ⋅ ⟨11,8⟩ ⋅ ⟨9,0⟩ ⋅ ⟨1,6⟩ ⋅ ⟨10,4⟩ ⋅ ⟨8,0⟩ ⋅ ⟨0,7⟩ ⋅ ⟨6,5⟩ ⋅ ⟨4,2⟩ ⋅ ⟨0,12⟩ ⋅ ⟨7,13⟩ ⋅ ⟨5,− ⟩ ⋅ ⟨2,− ⟩ ⋅ ⟨12,− ⟩ ⋅ ⟨13,− ⟩

S4 = R(S′�3) = 5 ⋅ 3 ⋅ 13 ⋅ 11 ⋅ 2 ⋅ 12 ⋅ 10 ⋅ 0 ⋅ 8 ⋅ 6 ⋅ 1 ⋅ 9 ⋅ 7 ⋅ 4 ⋅ 14 ⋅ 15

⋮
Slog n = R(S′�log n − 1) = ⋯



KMR

Total time: O(Sort(Σ) + n log n) = O(n log n) 
Fun facts: 
• Replace-by-rank preserves lexicographic order

• Sort by longest fingerprints to get the suffix sorting


Suffix sorting: the sorted order of all suffixes of 
a string 
• This will come back later




KMR back in the day

KMR used to be described with a big table 
• It’s still O(n log n)


What does the big table do for you? 
• It lets you compute KMR in parallel


Remember PRAMs? 
• They were a wonderful computational model that 

theoreticians abandoned because they got teased by 
bullies



So now, the challenge

KMR solves the problem in O(n log n) 
Knuth conjectures that it’s Ω(n log n) 
• Even for binary alphabets


So it’s time for Weiner to do his thing 
• One year later: O(n) time for finding longest repeated 

string in a binary string.

• Knuth declares it the “Algorithm of the Year”

• It’s not trivial to see it now, but his paper invented the 

suffix tree



Peter Weiner disappears

Right after he proves his big result: 
• Weiner leaves academia

• Starts Interactive Systems Corporation

• Which owned Unix for a while

• So all hackers hated it/him



Peter Weiner Reappears!

I cite Weiner for years, of course and then: 
• July 19, 2012, he friends me (or whatever) on LinkedIn


• This is the moment I realized that LinkedIn has some 
actual value.  


• This value-added experience was never to be repeated. 



Peter Weiner disappears

We talked that day.  We emailed that day:



Vaughan Pratt’s notes:



Vaughan Pratt’s notes:

Good news: the whole 
alphabet thing was 

thought about from the 
beginning

Bad news:  Had my 
paper “Optimal Suffix 
Tree Construction with 
Large Alphabet” been 

scooped?  By 24 
years???



Vaughan Pratt’s notes:

Best news: No, I was 
not scooped



Years Passed

Suffix trees: 
• Right to left

• Left to right

• Real time

• Simpler

• etc.


If you want to know 
the history of those 
results, ask the authors 
of those papers…



Building a Suffix 
Tree: The Large 
Alphabet Edition



Outline the algorithm

Step 1:  Recursively sort odd suffixes. 
• How?  And how is it recursive?  A recursive step must 

sort every suffix!  We’ll get to that.


Step 2: Sort even suffixes. 
• Yikes.  We can’t afford to do this recursively.

• If we do, then we get T(n) ≥ 2T(n/2) + Ω(n)

• And we get an Ω(n log n) algorithm.

• So we can only afford linear time for this step.


Step 3: Merge! 
• How?

• Can only afford linear time for this step.



Before we move on: 

A word about  
Suffix Arrays 



Suffix Trees and Succinct Suffix Trees

String Ω(Sort(Σ, n ))

Suffix tree
O(n )

Suffix array
O(n )

Suffix sort
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Suffix Trees and Succinct Suffix Trees

String Ω(Sort(Σ, n ))

Suffix tree
O(n )

Suffix array
O(n )

Suffix sort

More or less succinct 

versions of 


same data structure

And fastest suffix

array algo is 


simplification of

suffix tree algo



Example: Mississippi$

Mississippi$

sissippi$

sippi$

i$
pi$
ppi$

ssissippi$
ississippi$

issippi$
ssippi$

ippi$

$

Mississippi$

sissippi$
sippi$

i$

pi$
ppi$

ssissippi$

ississippi$
issippi$

ssippi$

ippi$

$

{

{
8 2 5 11 1 9 10 6 3 7 4 128 5 11 1 9 10 6 3 7 4 122

1        2     3       4      5     6      7      8      9        10     11   12
Mississippi$



How fast can we sort?

Sorting suffixes is no faster than sorting 
characters. 

This talk: Matching this lower bound



Radix Sort Review

Recall that Radix Sort proceeds in steps: 
• Lexicographically sort the last i characters of each string.  

• Stably sort by preceding character.  Now strings are 

lexicographically sorted by last i+1 characters.


It’s not just for strings: 
• Radix sort means you can sort n numbers in range [nO(1)] 

in O(n) time

sorte
d

sorte
d



Suffix Sorting

Main idea: Combine Merge Sort with Radix Sort. 

Tools: 
• Replace by Rank

• Radix Step

• Chunking


So it’s related to KMR 
• But we need to figure out how to avoid computing so 

many fingerprints

✔
✔
✔



Exploring Radix Step

What happens if we sort only some suffixes? 
• Say, suffixes 4, 8, and 23?

• Now we do one radix step


What happens we you add one character to the 
front of a suffix? 
• It becomes the previous suffix

• S[3] · suffix(4) = suffix(3)

• S[7] · suffix(8) = suffix(7)

• S[22] · suffix(23) = suffix(22)


• So one radix step of sorted order of suffixes 4, 8 and 23 
gives sorted order of suffixes 3, 7 and 22.



Example: sorting odd suffixes of 214414413315

214414413315

4414413315

413315

14413315

3315

15

214414413315

4414413315
413315

14413315

3315

15

214414413315
14414413315
4414413315

413315
4413315
14413315

13315

414413315

3315
315
15
5

25 1111 11 99 37 73

Odd Suffixes



Example: 214414413315

214414413315

4414413315
413315

14413315

3315

15

Even Suffixes

5
14414413315
4413315

414413315

13315

315

5

14414413315

4413315
414413315

13315

315

88 10 610 6 4 124 1252



Where are we on the algorithm?

Step 1:  Recursively sort odd suffixes. 
• How?  


Step 2: Sort even suffixes in linear time. 
• By Radix Step!


Step 3: Merge!

8 2 5 11 1 9 10 6 3 7 4 128 5 11 1 9 10 6 3 7 4 122

?

25 1111 11 99 37 73

Odd Suffixes Even Suffixes
88 10 610 6 4 124 1252? ✔



Chunking + Recursion: I

Observation:   
• The order of the odd suffixes of 


• is computable from the order of all suffixes of   


• Since chunking preserves lexicographic ordering.

S′� = (⟨s1, s2⟩, ⟨s3, s4⟩, …⟨sn − 1, sn ⟩)

S= (s1, s2…sn )



Example: 214414413315

8 2 5 11 1 93 6 5 4 21

214414413315

4414413315
413315

14413315

3315

15
〈21〉〈44〉〈14〉〈41〉〈33〉〈15〉
〈44〉〈14〉〈41〉〈33〉〈15〉
〈14〉〈41〉〈33〉〈15〉
〈41〉〈33〉〈15〉
〈33〉〈15〉
〈15〉

25 1111 11 99 37 73

17 36 12 33 27 13

36 12 33 27 13

12 33 27 13

33 27 13
27 13

13
17 36 12 33 27 13
36 12 33 27 13
12 33 27 13
33 27 13
27 13
13

3 bits per character

treat as base 8

2x-1



Chunking + Recursion: II

Chunking+Range Reduction = Recursion 
• Input is in [n]n.

• Chunked Input is in [n2]n/2.

• Replace-by-Rank Chunking is in [n/2]n/2.

• So now problem instance is half the size and we can 

recurse.



Example: 214414413315

8 2 5 11 1 93 6 5 4 21

214414413315

4414413315
413315

14413315

3315

15
〈21〉〈44〉〈14〉〈41〉〈33〉〈15〉
〈44〉〈14〉〈41〉〈33〉〈15〉
〈14〉〈41〉〈33〉〈15〉
〈41〉〈33〉〈15〉
〈33〉〈15〉
〈15〉

25 1111 11 99 37 73

3 6 1 5 4 2

6 1 5 4 2

1 5 4 2

5 4 2
4 2

2
3 6 1 5 4 2
6 1 5 4 2
1 5 4 2
5 4 2
4 2
2

3 bits per character

treat as base 8

2x-1

<14> 1
<15> 2

<21> 3
<33> 4

<41> 5
<44> 6



Suffix Sorting

Step 1: Chunk + Range Reduction.  T(n/2) 
• Recurse on new string.

• Get sorted order of odd suffixes.


Step 2: Radix Step. (Not 2nd Recursion!). O(n) 
• Get sorted order of even suffixes.


Step 3: Merge! 
• We still don’t know how to do this.



The Trouble with Merging

Know how the odd suffixes compare. 
Know how the even suffixes compare. 
No idea how odd & even compare! 
• And comparing them character by character takes O(n)

• For a total of O(n2)



The difference between 3 and 2

It’s possible to merge the lists. 
• By F ’97 “unintuitive” algorithm.


But Kärkkäinen & Sanders showed the elegant 
way to merge. 
• They complicate the recursion

• It’s not too bad

• And it make merging easy.


I modified their algorithm to make merging even 
easier.



Mod 3 Recursion

Given a string 

Let  

Let 

Let O12 be order of suffixes ≡ 1 or 2 (mod 3). 
• You get this recursively from sorting the suffixes of S1S2

S= (s1, s2, …, sn )

S1 = (⟨s1, s2, s3⟩, ⟨s4, s5, s6⟩…, ⟨sn − 2, sn − 1, sn ⟩)

S2 = (⟨s2, s3, s4⟩, ⟨s5, s6, s7⟩…, ⟨sn − 1, sn , $⟩)



Example: 214414413315

〈214〉〈414〉〈413〉〈315〉
〈144〉〈144〉〈133〉〈155〉 〈214〉〈414〉〈413〉〈315〉〈144〉〈144〉〈133〉〈155〉 47652213

47652213
7652213
652213
52213
2213
213
13
3

213

47652213

7652213
652213
52213

2213

13

3
3(x-4)-1 x>4 

3x-2      o/w

8 2 5 11 1 9 10 6 3 7 4 128 115 91 10 6 3 7 4 122

8 2 5 11 17 6 8 1 945 93 92

8 2 5 11 18 5 11 1 9102 97 94O12

1                 2                3                4                5                6                7                 8

1                4                 7               10                2                5                8                11



Radix Step x 2

We have O12 from the recursion. 
One Radix Step gives us O01 
• Radix stepping a 1 suffix gives a 0 suffix.

• Radix stepping a 2 suffix gives a 1 suffix.


Another Radix Step gives us O02 
Each suffix pair is now comparable. 
Each suffix appears in two lists.



Example: 214414413315

8 2 5 11 18 5 11 1 9102 97 94O12

214414413315

14414413315

414413315

14413315

413315

13315

315

15

5

214414413315

4414413315

414413315

4413315

413315

3315

315

5

214414413315

4414413315

414413315
4413315

413315
3315
315

8 2 5 11 11 9 6 3 9710 94 912O01

8 2 5 11 18 5 11 9 962 93 912O02



Merging... at last!

An example is worth a thousand words...



Example: 214414413315

8 2 5 11 18 5 11 1 9102 97 94O12

8 2 5 11 11 9 6 3 9710 94 912O01

8 2 5 11 18 5 11 9 962 93 912O02



Example: 214414413315

8 2 5 11 18 5 11 1 9102 97 94O12

8 2 5 11 11 9 6 3 9710 94 912O01

8 2 5 11 18 5 11 9 962 93 912O02

8 2 5 11 1 9 10 6 3 7 4 12118 5 1 9 10 6 3 7 4 122



Example: 214414413315

2 5 11 15 11 1 9102 97 94O12

8 2 5 11 11 9 6 3 9710 94 912O01

2 5 11 15 11 9 962 93 912O02

8 2 5 11 1 9 10 6 3 7 4 12118 5 1 9 10 6 3 7 4 122



Example: 214414413315

2 5 11 1115 1 9102 97 94

8 2 5 11 11 9 6 3 9710 94 912

2 5 11 1115 9 962 93 912

8 2 5 11 1 9 10 6 3 7 4 12118 5 1 9 10 6 3 7 4 122

O12

O01

O02



Example: 214414413315

11 910 97 94

8 2 5 11 11 9 6 3 9710 94 912

19 96 93 912

8 2 5 11 1 9 10 6 3 7 4 12118 5 1 9 10 6 3 7 4 122

O12

O01

O02



Example: 214414413315

11 910 97 94

8 2 5 11 11 9 6 3 9710 94 912

19 96 93 912

8 2 5 11 1 9 10 6 3 7 4 12118 5 1 9 10 6 3 7 4 122

O12

O01

O02



Example: 214414413315

910 97 94

2 5 11 19 6 3 9710 94 912

19 96 93 912

8 2 5 11 1 9 10 6 3 7 4 12118 5 1 9 10 6 3 7 4 122

etc.

O12

O01

O02



Total time

T(n) to sort suffix of strings in [n]n 
T(n) = recursion + 2*radix + merging 
T(n) = O(n)+T(2n/3) + O(n) + O(n) 
T(n) = O(n)



Total time

The initial Replace by Rank step to get a general 
string in Σn into the integer alphabet -- [n]n --is 
the bottleneck. 
• So this algorithm is optimal for any alphabet.


• Or is it?  More in a minute.



So why did we 
want to sort 

suffixes?



LCP & Suffix Arrays

1 1 0 0 1 0 13 2 04
8 2 5 11 1 9 10 6 3 7 4 128 5 11 1 9 10 6 3 7 4 122

Mississippi$
1         2     3       4     5     6       7      8     9         10    11   12

Combine two arrays: 
• Suffix sorting array

• Array of longest common prefixes of adjacent suffixes


This is called a Suffix Array 
• Manber & Myers ’90

• It is the most popular succinct version of a suffix tree



Time to go from sorted suffixes to suffix tree

Computing LCPs: O(n) 
• Kasai, Lee, Arimura, Arikawa & Park CPM01


Suffix Array to Standard Suffix Tree: O(n) 
• Via Cartesian Tree construction

• Vuillemin ‘80



Suffix Tree Optimality

If you are using Suffix Tree as a trie, then each 
node must be sorted, and the construction is 
optimal. 
If you are using Suffix Tree + LCAs, then the 
order of children is irrelevant. 
• The children of each node can be in any order, and it 

need not even be consistent between nodes. 



Suffix Tree Optimality

Alphabets matter: 
• For small integers, construction is already O(n), so this is 

optimal, even for Scrambled Suffix Trees. 

• In algebraic decision tree model, suffix trees have a lower 

bound from element uniqueness (depends on degree of 
root) so we have optimal algorithm.


• For large integers (word model of computation), lower 
bound is linear, upper bound is super-linear.



Open Problem

Close the gap in the time for building a large-
alphabet suffix tree, when child order is 
irrelevant. 

Related to Deterministic Hashing Open 
Problem: 
• Given n large integers, can you map them to small 

integers (poly n) in linear time in the word model?



To be clear

Today’s construction is optimal for sorted suffix 
trees 

What about unsorted suffix trees?



One last thing…



What’s Peter Weiner up to now?

He’s retired, and has a new career as a head-
shot photographer
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