Suffix Trees:
A Natural History

Rutgers uUniversi

What’s Iin this talk?

Yale 1970

Peter Weiner helped start the
Yale CS Department

 Like all administrators, he was
short on research time

« So he took a sabbatical to solve
one big problem

What did big problems look
like in the early 70s?
« What is O(n) vs what is O(n log n)?

 Planarity testing, strongly
connected components, etc.

» |s anything Q(n log n)???

Repeated strings

Given a string S of length n, what is longest
substring that occurs twice?

» |s this nlogn-time or linear?

Karp-Miller-Rosenberg solves this in O(n log n)

Knuth conjectured that the bound is Q(n log n)
» Knuth is right in many models
» Lower bound based on the element distinctness problem

So even for first major open problem in
stringology, we need to focus on the alphabet!

Karp Miller Rosenberg Main Idea

Find a fingerprint for substrings
» Two substrings have the same fingerprint iff they they are

equal
Not all fingerprints

» Substrings starting at any position
- Of any length a power of 2
» SO now we can compare any two substrings in log time

So we need to compute O(n log n) fingerprints
« KMR show how to compute them in O(n log n) time

Karp-Miller-Rosenberg: Building Blocks

Replace-by-Rank (RbR)

« Given a set S, we define
R: X" > [n]"

» Where R(S) replaces every character in S by its rank
» R(*faabbadaccaa’) = ‘00110302200’

» Notice: First call to RbR has runtime that depends on the
sortability of S

Bit Concat (a.k.a chunking):
Vx,y € X,(x,y) =x|X| +y

eg. (32)=3x4+2=14

Karp-Miller-Rosenberg: Fingerprints

At each J, for length 2/+7 we first compute:

(a, f)

Then we Replace by rank the new fingerprints
» So that the number of bits doesn’t blow up

Reducing the number of bits:
* In Karp-Miller-Rosenberg, it’'s Replace by Rank
* In Karp-Rabin, it’'s modding by a random prime

Karp-Miller-Rosenberg: Fingerprints, Example

So = mississippippiss
So=R($y)=1-0-3-3-0-3-3-0-2-2-0-2-2-0-3-3

S1=(1,0)-€0,3) - (3,3) - (3,0) - (0,3) - (3,3) - (3,0) - {0,2) - (2,2) - (2,0) - {0,2) - (2,2) - (2,0) - {0,3) - (3,3) - (3,—)
S$S=R$)=2-1-6-5-1-6-5-0-4-3-0-4-3-1-6-7
$5=4(2,6) - (1,5) - (6,1) - (5,6) - (1,5) - (6,0) - (5.4) - {0,3) - (4,0) - (3,4) - {0,3) - {4,1) - (3,6) - (1, 7) - {6,—) - (7,—)
S;=R($)=3-1-11-9-1-10-8-0:6-4-0-7-5-2-12-13
S5 = (3,1) - (1,10) - (11,8) - (9,0) - (1,6) - (10.4) - (8,0) - (0,7) - (6,5) - (4.2) - (0,12) - (7,13) - (5,=) - (2, =) - (12,=) - (13,=)

S4=R($3;)=5-3-13-11-2-12-10-0-8-6-1-9-7-4-14-15

Slogn = R(Sl/ogn—l) -

KMR

Total time: O(Sort(Z) + n log n) = O(n log n)

Fun facts:

* Replace-by-rank preserves lexicographic order
» Sort by longest fingerprints to get the suffix sorting

Suffix sorting: the sorted order of all suffixes of
a string

* This will come back later

KMR back in the day

KMR used to be described with a big table
» |t’s still O(n log n)

What does the big table do for you?
» |t lets you compute KMR in parallel

Remember PRAMs?

* They were a wonderful computational model that
theoreticians abandoned because they got teased by
bullies

So now, the challenge

KMR solves the problem in O(n log n)

Knuth conjectures that it’s QQ(n log n)
» Even for binary alphabets

So it’s time for Weiner to do his thing

» One year later: O(n) time for finding longest repeated
string in a binary string.

» Knuth declares it the “Algorithm of the Year”

» It’s not trivial to see it now, but his paper invented the
suffix tree

Peter \Welner disappears

Right after he proves his big result:
» Weiner leaves academia
» Starts Interactive Systems Corporation
» Which owned Unix for a while
« So all hackers hated it/him

Peter \Welner Reappears!

| cite Welner for years, of course and then:
 July 19, 2012, he friends me (or whatever) on LinkedIn

LinkedIn

Peter G Weiner has indicated you are a Colleague at Yale University
Hi Martin,

| haven't worked in algorithms in almost 40 years, and | just came across your 1997 paper on
Optimal Suffix Tree Construction with Large Alphabets. I'm going to try to understand the
details, but from a higher-level perspective it looks quite interesting.

- Peter G Weiner

Accept View invitation from Peter G Weiner

Peter \Welner disappears

We talked that day. We emailed that day:

Peter Weiner ¢ July 19, 2012 at 8:08 PM @
Strings verses Trees

To: Martin L. Farach-Colton

Hi Martin,
It was a very real pleasure talking to you earlier, and | do hope we can have further contact down the road.

| also look forward to being introduced to the people you mentioned who are doing current work in Bioinformatics. One thing
that | think you mentioned -- if | understood you correctly -- is that people are (on the surface) avoiding Trees by using a
combination of Strings and Compression algorithms. Did | get that right?

he first presentation of my work was to a graduate school seminar at MIT attended by Vaughn Pratt. Shortly after(he wrote up’
hat looked at things from a String point of view. Unfortunately he never published this work -- it's quite interesting.
anach a version that is missing some sections at the end. If you have the time, | would be most interested in how you see

this work fitting into what has been done in the last almost 40 years. It is possible he anticipated work that was published later,
or perhaps there are ideas in his paper that are still worth disseminating?

Best,
Peter

PS (Vaughan also looked at the large alphabets.)

Improvements and Applications for the Weiner Repetition Finder

Contents

1. Introduction

2. Notation

3. Weiner's Repetition Finder

4. Testing for Repetitions

S. Creating Vertices

6. Updating Right Neighbors

7. Weiner's Algorithm in Detail
© 8. Timing

9. Relationship to other algorithms
10. Measuring Frequency

11. Longest Word Common to £ of m.

Vaughan R. Pratt
May 1973
(Revised October 1973)

(Rerevised March 1975)

Vaughan Pratt’s notes:

Vaughan Pratt’s notes:

l. Introduction

Our objectives are:

(1) to establish the properties of strings responsible GOOd neWS: the Wh0|e
for the correctness of Weiner's [19731 string processing

algorithm (whose correctness hitherto was established al phabet th i ng WaS
only by appealing to the properties of the data structures thoug h.t about from the

used in the algorithm); these properties appear below as

Theorems 1, 2 and 3; beginning

(ii) to simplify and clarify the algorithm, both structurally

and with respect to the number of cases;

(iii) to show that the running time of Weiner's algorithm

can be made independent of the alphabet size on a RAM with

unit cost operations and storage preset to zero: Bad neWS: Had my

(iv) to describe further applications for the algorithm. T O _t- | S ﬁ.
Let <I* be the set of all strings over some finite paper p Ima u IX

alphabet £. A subword of a string A = a,3,...2, is a Tree Construction With

string that occurs in A as a contiguous substring. Ful-

filling objective (iv), we shall give algorithms for each Large Alphabet” been
of the following problems; their running time is, in each ?
case, proportional to the total length of the input. SCOO ped = By 24

(a) Find the frequency of occurrence of all subwords of yearS???

a string. (Since there may be up to (n;]') + 1 subwords

of a string, we must be careful how we represent this information.)

~21-

neighbors(wa). ~ neighbors(x);
for b in neighbors(x) do

wa.b - x.b
The lexical complexity is of value mainly when inter-

preting each lexical item can be done in a fixed amount of

(Vtime. By using various n x |£| arrays for the objects
w.a, w:a and *a:w, such a bound can be achieved provided
we may assume all array entries to be initially undefined.
Unfortunately this can be very wasteful of space; in fact,
to achieve a time independent of ||, the factor of |=|
has simply crossed over to the space bound! If we had a
machine M that did not charge us for undefined storage
locations, this objection would vanish. In practice, as
far as we know a random access machine can simulate M
at no extra cost in space (to within a constant factor)

with at best a time overhead of a factor of 1log(S) where S is

the total space, defined and undefined, required for the

arrays. If we assume |Z| < n (which is true if I is

restricted to the letters in A) then this amounts to an
overhead of a factor of logn in time in order to keep
the space requirements independent of IZI on a random
access machine. Any improvement to the techniques for

simulating M will lead to a corresponding improvement

\¥in Weiner's algorithm.

Vaughan Pratt’s notes:

Best news: No, | was
not scooped

Suffix trees:

- Right to left]2

» Left to right]]] -

* Real time . i N '

- Simpler p]O . ”.]2 '™ 2
A

e etc. g .
- q

If you want to know

results, ask the authors)

2
- 8. CHNG
the history of those "\ ,7 62 4 4
of those papers... I'7 E;

Building a Suffix
Jree: The Large

Outline the algorithm

Step 1: Recursively sort odd suffixes.

- How? And how is it recursive? A recursive step must
sort every suffix! We’ll get to that.

Step 2: Sort even suffixes.
* Yikes. We can’t afford to do this recursively.
- |[f we do, then we get T(n) = 2T(n/2) + Q(n)
» And we get an Q(n log n) algorithm.
« So we can only afford linear time for this step.

Step 3: Merge!
* How?
» Can only afford linear time for this step.

Before we move on;

Suffix Trees and Succinct Suffix Trees

Suffix tree
I O(n)

Suffix array

I O(n)

Suffix sort

Suffix Trees and Succinct Suffix Trees

More or less succinct
versions of
same data structure

Suffix Trees and Succinct Suffix Trees

4 R

Suffix tree
I O(n)

String Q(Sort(Z, n)> Suffix array
I O(n)

And fastest suffix KSUﬁiX sortj

array algo is
simplification of
suffix tree algo

More or less succinct
versions of
same data structure

Suffix Trees and Succinct Suffix Trees

And fastest suffix
array algo is
simplification of
suffix tree algo

More or less succinct
versions of
same data structure

Mississippid

4 5 6 7 8 9 10 11 12

Mississippi$ ippi$
ississippid issippi$
ssissippi$ { ississippi$
sissippi$ i$

issippid Mississippi$
ssippi$ pi$

sippi$ ppi$

ippi$ sippi$
ppi$ sissippi$
pi$ ssippi$

i$ ssissippid
$ $

=

How fast can we sort”?

Sorting suffixes is no faster than sorting
characters.

This talk: Matching this lower bound

Radix Sort Review

Recall that Radix Sort proceeds in steps:

» Lexicographically sort the last i characters of each string.

» Stably sort by preceding character. Now strings are
lexicographically sorted by last /+1 characters.

> D

It’s not just for strings:

* Radix sort means you can sort n numbers in range [n°(1)]
in O(n) time

Suffix Sorting

Main idea: Combine Merge Sort with Radix Sort.

Tools:
- Replace by Rank ¢/
- Radix Step ¢/
 Chunking ¢

So it’s related to KMR

- But we need to figure out how to avoid computing so
many fingerprints

Exploring Radix Step

What happens if we sort only some suffixes?
 Say, suffixes 4, 8, and 23?7
* Now we do one radix step

What happens we you add one character to the
front of a suffix?

» It becomes the previous suffix

 S[3] - suffix(4) = suffix(3)

« S[7] - suffix(8) = suffix(7)
« 5[22] - suffix(23) = suffix(22)

« So one radix step of sorted order of suffixes 4, 8 and 23
gives sorted order of suffixes 3, 7 and 22.

Example: sorting odd suffixes of 214414413315

214414413315 214414413315

14414413315

4414413315 4414413315

414413315 14413315
14413315 14413315 15

4413315 214414413315
413315 413315 3315

13315 413315
3315 3315 4414413315
315

15 15

5

5[11[1]9]7[3]
Odd Suffixes

Example: 214414413315

1451413315 (391451413315 13315
1441441331
014414413315 o 3315
3315 13315
413315 4413315 41141?315
4414413315 14414413315 g 3315
5

Even Suffixes

Where are we on the algorithm?

Step 1: Recursively sort odd suffixes.
« How?

Step 2: Sort even suffixes in linear time.
- By Radix Step!

Step 3: Merge!
— [SI[T[e[7]3] V) [B[z[0[e[3 T2

Odd Suffixes l Even Suffixes

Chunking + Recursion: |

Observation:
 The order of the odd suffixes of

S — (Sl’ Sz. . .Sn)

* Is computable from the order of all suffixes of

S = ((51,52)» (53, 84)» -+ - {815 5,))

» Since chunking preserves lexicographic ordering.

Example: 214414413315

17 36 12 33 27 13 12 33 27 13

36 12 33 27 13 13

1933 97 13 17 36 12 33 27 13

89 [BTE[6[4]Z
2713 36 12 33 27 13

13

(21)(44)(14)(41)(33)(15) 14413315

(44)(14)(41)(33)(15) 15

(14)(41)(33)(15) 214414413315 _
(41(33)(15) 3315

<33><1 5> 413315

<1 5> 3 bits per character 4414413315

treat as base 8

Chunking + Recursion: ||

Chunking+Range Reduction = Recursion
* Input is in [n]n.
« Chunked Input is in [n2]"2,
» Replace-by-Rank Chunking is in [n/2]7/2,

« So now problem instance is half the size and we can
recurse.

Example: 214414413315

361542 1542
61542 2
e I 3[6[1[5[4]2]
i3
4 2 <14>
) — 61542
<21>
<33>
<41>
<44>
(21X44X14X41X33)X15) 14413315
(44X14X41X33X15) 15
(14)41X33)15) 214414413315 _
(41%(33)(15) 3315
(33%15) , 413315
3 bits per character 4414413315

<1 5> treat as base 8

Suffix Sorting

Step 1: Chunk + Range Reduction. T(n/2)

* Recurse on new string.
« Get sorted order of odd suffixes.

Step 2: Radix Step. (Not 2nd Recursion!). O(n)

« (Get sorted order of even suffixes.

Step 3: Merge!

* We still don’t know how to do this.

The Trouble with Merging

Know how the odd suffixes compare.
Know how the even suffixes compare.

No idea how odd & even compare!
» And comparing them character by character takes O(n)
» For a total of O(n?)

The difference between 3 and 2

It’s possible to merge the lists.
* By F '97 “unintuitive” algorithm.

But Karkkainen & Sanders showed the elegant
way to merge.

* They complicate the recursion

» |t’s not too bad

* And it make merging easy.

| modified their algorithm to make merging even
easier.

Mod 3 Recursion

Given a string
S — (SI’SZ’ ...,Sn)
Let
S1 = ({81552, 53) (45 555 567 -+ > {8_25 S_15 5,))

Let
S = ({82, 53, 84)» (S55 65 57) «+0» (S, _1,5,, 5))

Let O12 be order of suffixes = 1 or 2 (mod 3).
* You get this recursively from sorting the suffixes of S1S»

Example: 214414413315

» 47652213

13 47652213

213 7652213

2213 652213
213

3 52213
‘ 3(x-4)-1 x>4 47652213 «
3x-2 o/w 52213
652213 13

2213
7652213 3

gli;gliig;g;g ;g; # (214X414X413X315X144)144)(133)(155)

Radix Step x 2

We have 012 from the recursion.

One Radix Step gives us O
» Radix stepping a 1 suffix gives a 0 suffix.
» Radix stepping a 2 suffix gives a 1 suffix.

Another Radix Step gives us Oo2
Each suffix pair is now comparable.

Each suffix appears in two lists.

Example: 214414413315

13315 413315 214414413315
14413315 414413315 315
14414413315 214414413315 3315

15 315 413315
214414413315 414413315
315 3315 4413315
413315 4413315 4414413315
414413315 4414413315 5

5

Merging... at last!

An example is worth a thousand words...

Example: 214414413315

12

01

02

Example: 214414413315

12

01

02

Example: 214414413315

12

01

02

Example: 214414413315

Example: 214414413315

12
01

02

Example: 214414413315

12
01

02

Example: 214414413315

12
01

02

etc.

Total time

T(n) to sort suffix of strings in [n]n
T(n) = recursion + 2*radix + merging
T(n) = O(n)+T(2n/3) + O(n) + O(n)
T(n) = O(n)

Total time

The Initial Replace by Rank step to get a general
string in 2" into the integer alphabet -- [n]" --is
the bottleneck.

 So this algorithm is optimal for any alphabet.

 Orisit? More in a minute.

SO why did we
want 10 sort

LCP & Suffix Arrays

Combine two arrays:
- Suffix sorting array
 Array of longest common prefixes of adjacent suffixes

Mississippi$

2 3 4 5 6 7 8 9 10 11 12

This is called a Suffix Array

* Manber & Myers 90
» It is the most popular succinct version of a suffix tree

Time to go from sorted suffixes to suffix tree

Computing LCPs: O(n)
- Kasai, Lee, Arimura, Arikawa & Park CPMO1

Suffix Array to Standard Suffix Tree: O(n)

* Via Cartesian Tree construction
* Vuillemin ‘80

Suffix Tree Optimality

If you are using Suffix Tree as a trie, then each
node must be sorted, and the construction is
optimal.

If you are using Suffix Tree + LCAs, then the
order of children is irrelevant.

» The children of each node can be in any order, and it
need not even be consistent between nodes.

Suffix Tree Optimality

Alphabets matter:

» For small integers, construction is already O(n), so this is
optimal, even for Scrambled Suffix Trees.

» In algebraic decision tree model, suffix trees have a lower
bound from element unigueness (depends on degree of
root) so we have optimal algorithm.

 For large integers (word model of computation), lower
bound is linear, upper bound is super-linear.

Open Problem

Close the gap in the time for building a large-
alphabet suffix tree, when child order is
irrelevant.

Related to Deterministic Hashing Open
Problem:

» Given n large integers, can you map them to small
integers (poly n) in linear time in the word model?

To be clear

Today’s construction is optimal for sorted suffix
trees

What about unsorted suffix trees?

One last thing...

What’s Peter Weiner up to now"?

He’s retired, and has a new career as a head-
shot photographer

' "'f"
v "

0 .) 4
i 7.2

"

now?

TN

ottt

