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Computer Science Foundation Exam 

May 18, 2019 

Section I A  

DATA STRUCTURES 

 

 
NO books, notes, or calculators may be used,  

and you must work entirely on your own. 

 

Name:     ___________________________________________ 

UCFID:  ___________________________________________ 

NID:       ___________________________________________ 

 

Question # Max Pts Category Score 

1 10 DSN  

2 10 DSN  

3 5 ALG  

TOTAL 25   
  

  

You must do all 3 problems in this section of the exam. 
 

Problems will be graded based on the completeness of the solution steps and not 

graded based on the answer alone. Credit cannot be given unless all work is shown 

and is readable. Be complete, yet concise, and above all be neat. For each coding 

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that 

particular question have been made.       
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1) (10 pts) DSN (Dynamic Memory Management in C) 

 

Suppose we have an array of structures containing information about Cartesian points. The struct shown 

below contains two integers, one for the x coordinate and one for the y coordinate. For this problem, write 

a function, createPoints, to create some random Cartesian points with each coordinate set to a random 

integer in between 0 and 10, inclusive. 

 

createPoints takes in the number of points to be created, numPoints.  Your function should dynamically 

allocate an array of numPoints CartPoints structs and set each of their x and y coordinates with 

pseudorandom integer values in between 0 to 10, inclusive. You may assume that the random number 

generator has been seeded already. Your function should return a pointer to the array that was created and 

initialized. 

 
typedef struct CartPoint { 

 int x; 

 int y; 

} CartPoint; 

 

CartPoint* createPoints(int numPoints) { 

  int i; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

} 
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2) (10 pts) ALG (Linked Lists) 
  

Suppose we have a queue implemented as a doubly linked list using the structures shown below with head 

pointing to node at the front of the queue and tail pointing to the node at the end of the queue. 

 
typedef struct node { 

    int data; 

    struct node *next, *prev; 

} node;  

 

typedef struct queue { 

 int size; 

 node *head, *tail; 

} queue; 

 

Write an enqueue function for this queue. If the queue is already full, return 0 and take no other action. If 

the queue has not been created yet, return 0 and take no other action. If the queue isn't full, enqueue the 

integer item into the queue, make the necessary adjustments, and return 1. Since there is no fixed size, 

the queue will be considered full if a new node can't be allocated.  

 
int enqueue(queue *thisQ, int item) { 

 

 struct node *newNode = ____________________________________ ;  

 

if(thisQ == NULL) return 0;        

  

 if(newNode == NULL) return 0;       

 

 newNode->data = _________;   

      

newNode->next = _________;    

 

thisQ->size = _______________________; 

 

 if(thisQ->head == NULL) {       

  newNode->prev = ____________;        

  thisQ->head = ______________;       

thisQ->tail = ______________;       

  return 1; 

} 

 

 _____________________________________________; 

 

     _____________________________________________; 

 

     _____________________________________________; 

     return 1;       

} 
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3) (5 pts) DSN (Stacks) 
  

Convert the following infix expression to postfix using a stack.  Show the contents of the stack at the 

indicated points (1, 2, and 3) in the infix expression.   

 

      1            2                 3 

  A  +  ( B  -                 C * (D +                   E) ) -  F                     *  G  
   

 

 

       

     

     

     

     

     

 

   1        2                 3 

 

 

Resulting postfix expression: 
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DATA STRUCTURES 

 

 
 

NO books, notes, or calculators may be used,  

and you must work entirely on your own. 

 

Name:     ___________________________________________ 

UCFID:  ___________________________________________ 

NID:       ___________________________________________ 

 

Question # Max Pts Category Score 

1 10 ALG  

2 5 ALG  

3 10 DSN  

TOTAL 25   
  

  

You must do all 3 problems in this section of the exam. 
 

Problems will be graded based on the completeness of the solution steps and not 

graded based on the answer alone. Credit cannot be given unless all work is shown 

and is readable. Be complete, yet concise, and above all be neat. For each coding 

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that 

particular question have been made.        
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1) (10 pts) ALG (Binary Trees) 

 

What does the function call solve(root) print out if root is pointing to the node storing 50 in the tree 

shown below? The necessary struct and function are provided below as well. Please fill in the blanks 

shown below. (Note: the left pointer of the node storing 50 points to the node storing 5, and all of the 

pointers shown correspond to the direction they are drawn in the picture below.) 

 

         
typedef struct bstNode { 

    int data; 

    struct bstNode *left; 

    struct bstNode *right; 

} bstNode; 

   
int solve(bstNode* root) { 

 

    if (root == NULL) return 0; 

 

    int res = root->data; 

    int left = solve(root->left); 

    int right = solve(root->right); 

 

    if (left+right > res) 

        res = left+right; 

 

    printf("%d, ", res); 

    return res; 

} 

 

 

 

 

 

 

 

 

_____ , _____ , _____ , _____ , _____ , _____ , _____ , _____ , _____ , _____ , 
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2) (5 pts) ALG (Hash Tables) 
  

Insert the following numbers (in the order that they are shown from left to right) into a hash table with 

an array of size 10, using the hash function, H(x) = x mod 10.  

 

234  344  483 564 814  

 

Show the result of the insertions, assuming any hash collisions are resolved through quadratic probing. 

 

Index Value 

0  

 

1  

 

2  

 

3  

 

4  

 

5 

 

 

6 

 

 

7 

 

 

8 

 

 

9 
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3) (10 pts) DSN (Tries) 
  

In many word games, the player is given some tiles with letters and must form a word with those tiles. 

Given a trie that stores a dictionary of valid words and a frequency array storing information of the tiles a 

player has, determine the number of unique words she can form with those tiles. Complete the function 

shown below to solve the given problem. Note: the entry in freq[i] represents the number of tiles with the 

letter 'a' + i. (Hint: recursing down the trie is exactly like placing a tile down, which means updating 

the freq array. When you have finished "trying a tile" you have to put it back into your pool, which 

means editing the freq array again.) 

 
typedef struct TrieNode { 

    struct TrieNode *children[26]; 

    int flag; // 1 if the string is in the trie, 0 otherwise 

} TrieNode; 

 

int countWords(TrieNode* root, int freq[]) { 

 

    int res = ______________________ ; 

 

    int i; 

    for (i=0; i<26; i++) { 

 

         

        if ( ___________________ || __________________________ ) 

            continue; 

         

 

        __________________________________________ ; 

 

         

        res += ______________________________________________ ; 

 

 

        __________________________________________ ; 

    } 

 

    return res; 

} 
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Computer Science Foundation Exam 
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Section II A 

ALGORITHMS AND ANALYSIS TOOLS  

 

NO books, notes, or calculators may be used,  

and you must work entirely on your own. 

 

Name:     ___________________________________________ 

UCFID:  ___________________________________________ 

NID:       ___________________________________________ 

 

Question # Max Pts Category Score 

1 10 ANL  

2 5 ANL  

3 10 ANL  
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You must do all 3 problems in this section of the exam. 
 

Problems will be graded based on the completeness of the solution steps and not 

graded based on the answer alone. Credit cannot be given unless all work is shown 

and is readable. Be complete, yet concise, and above all be neat. For each coding 

question, assume that all of the necessary includes (stdlib.h, stdio.h, math.h, 

string.h) for that particular question have been made.        
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1) (10 pts) ANL (Algorithm Analysis) 

 

Consider storing a table with indexes 0 to N-1, where N = k2, for some positive integer k, that starts with 

all entries equal to 0 and allows two types of operations: (1) adding some value to a particular index, and 

(2) querying the sum of all the values in the table from index 0 through index m, for any positive integer 

m < N. One way to implement a "table" to handle these two operations is to store two separate arrays, 

groups, of size k and freq, of size N. freq stores the current value of each index in the table. For the 

array groups, index i (0 ≤ i < k) stores the sum of the values in freq from index ik to index (i+1)k-1. (For 

example, if N = 25, then groups[2] stores the sum of the values of freq, from freq[10] through freq[14], 

inclusive.  

 

Determine, with proof, the run-time of implementing operation (1) on this table using this storage 

mechanism and determine, with proof, the run-time of implementing operation (2) on this table using 

this storage mechanism. (For example, if N = 100 and we had a query with m = 67, to get our answer we 

would add groups[0], groups[1], groups[2], groups[3], groups[4], groups[5], freq[60], freq[61], 

freq[62], freq[63], freq[64], freq[65], freq[66] and freq[67]. Notice that since the ranges 0-9, 10-19, 

20-29, 30-39, 40-49, and 50-59 are fully covered in our query, we could just use the groups array for 

each of those sums. We only had to access the freq array for the individual elements in the 60s.) 

 

Your answers should be Big-Oh answers in terms of N as defined above. 
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2) (5 pts) ANL (Algorithm Analysis) 
  

An algorithm to process a query on an array of size n takes O(√𝑛) time. For n = 106, the algorithm runs 

in 125 milliseconds. How many seconds should the algorithm take to run for an input size of n = 

64,000,000? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

________________ 
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3) (10 pts) ANL (Recurrence Relations) 
  

Use the iteration technique to find a Big-Oh bound for the recurrence relation below. Note: you may find 

the following mathematical results helpful: 2𝑙𝑜𝑔3𝑛 = 𝑛𝑙𝑜𝑔32, and ∑ (
2

3
)𝑖 = 3∞

𝑖=0 . You may use these 

without proof in your work below. 

 

𝑇(𝑛) = 2𝑇 (
𝑛

3
) + 𝑂(𝑛), 𝑓𝑜𝑟 𝑛 > 1 

𝑇(1) = 𝑂(1) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 1 of 4 

 

  

Computer Science Foundation Exam 

 May 18, 2019 

Section II B 

ALGORITHMS AND ANALYSIS TOOLS  
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2 5 ALG  
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TOTAL 25   
  

  

You must do all 3 problems in this section of the exam. 
 

Problems will be graded based on the completeness of the solution steps and not 

graded based on the answer alone. Credit cannot be given unless all work is shown 

and is readable. Be complete, yet concise, and above all be neat. For each coding 

question, assume that all of the necessary includes (stdlib, stdio, math, string) for 

that particular question have been made.      
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1) (10 pts) DSN (Recursive Coding) 

 
Consider writing a recursive method that counts the number of paths from a starting (x, y) location on the 

Cartesian plane to an ending (x, y) location. Let the starting location be (sx, sy) and the ending location be (ex, ey), 

where all four coordinates are integers with sx ≤ ex and sy ≤ ey, and for each step on a valid path, either 1 must get 

added to the current x coordinate or 1 must get added to the current y coordinate. In addition, some given 

locations are disallowed as intermediate locations on the path. Complete the function shown below to solve this 

task. The input to the function takes in sx, sy, ex, ey and a two dimensional integer array named allowed, such that 

allowed[x][y] is set to 1 if a path is allowed to go on coordinate (x, y) or set to 0 otherwise. It is guaranteed that  

(sx, sy) and (ex, ey) are coordinates which are both inbounds and an inbounds function is provided for you. It's not 

guaranteed that both (sx, sy) and (ex, ey) are valid locations to be on. In this case, the answer is 0. 

 
#define N 10 

int inbounds(int x, int y); 

 

int numpaths(int sx, int sy, int ex, int ey, int allowed[][N]) { 

     

    if (!allowed[sx][sy]) return ___; 

 

    if (sx > ex || sy > ey) return ___; 

 

    if (sx == ex && sy == ey) return  ___; 

 

    int res = ___ ; 

 

    if ( _______________________ ) 

  

        res += numpaths(____, ____, ____, ____, __________); 

 

    if ( _______________________ ) 

  

        res += numpaths(____, ____, ____, ____, __________); 

 

    return res; 

} 

 

int inbounds(int x, int y) { 

    return x >= 0 && x < N && y >= 0 && y < N; 

} 
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2) (5 pts) DSN (Sorting) 
  

In both Merge Sort and Quick Sort, in class we are taught to break down the sorting problem recursively 

such that the base case is a subarray of size 1 (or 0). It turns out that for both, on average, the 

implementation is faster if we have a base case with a subarray of size in between 20 and 50 and use a 

O(n2) sort (typically insertion sort) to sort the base case subarray. Even though insertion sort is O(n2), 

why does this modification to the algorithm result in a speed up for both Merge Sort and Quick Sort? 
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3) (10 pts) ALG (Backtracking) 
  

Consider an arbitrary permutation of the integers 0, 1, 2, …, n-1. We define the "jumps" in a 

permutation array perm to be the set of values of the form perm[i] - perm[i-1], with 1 ≤ i ≤ n-1. For this 

problem you will write a backtracking solution count the number of permutations that can be created 

given a limited set of jumps. The function will take in arrays perm, representing the current permutation 

array, used, storing which items were used in the current permutation, k, the number of fixed items in the 

current permutation, jumps, an array storing the valid jumps allowed, and len, representing the length of 

the jumps array. The length of the perm and used arrays will be the constant N. Note that the jumps array 

contains both positive and negative values. For example, the permutation 3, 0, 2, 1 has the following 

jumps: -3, 2 and -1. Complete the framework that has been given below to solve the problem. 

 
#include <stdio.h> 

#define N 10 

 

int numperms(int perm[], int used[], int k, int* jumps, int len) { 

    int i, j, res = 0; 

 

    if (k == N) return ___; 

    for (i=0; i<N; i++) { 

 

        if (used[i]) _____________; 

 

        int flag = 0; 

        if (k == 0) 

            flag = ___; 

        else { 

            for (j=0; j < ____; j++) 

 

                if ( ____________ == jumps[j]) 

 

                    flag = ___; 

        } 

 

        if (flag) { 

            used[i] = ___; 

            perm[k] = ___; 

            res += numperms(perm, used, _____, jumps, len); 

            used[i] = ___; 

        } 

    } 

 

    return res; 

} 

 

 


