
Page 1 of 6

Computer Science Foundation Exam

 August 8, 2014

Section I B

COMPUTER SCIENCE

NO books, notes, or calculators may be used,

and you must work entirely on your own.

SOLUTION

Question # Max Pts Category Passing Score

1 10 ANL 7

2 10 ANL 7

3 10 DSN 7

4 10 DSN 7

5 10 ALG 7

TOTAL 50 35

You must do all 5 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat.

Summer 2014 Computer Science Exam, Part B

Page 2 of 6

1) (10pts) ANL (Algorithm Analysis)

List tight Big-Oh bounds(worst case), in terms of the variables used in the description, for each of the

following algortihms/operations. If not specified, assume an efficient implementation.

(a) Inserting an element into an AVL tree with n elements. O(lg n)

(b) Dequeing an element from a queue of n elements, where the queue O(1)

 is implemented with an array.

(c) Adding an m bit number to a n bit number. O(m+n)

(d) Sorting n numbers using a Quick Sort, where the partition element O(n2)

 is always the left-most item in the designated subarray.

(e) Inserting an item into a heap containing n2 items. O(lg n)

(f) Searching for an element in a binary tree of n elements. O(n)

(g) Printing out each of the permutations of the numbers 1, 2, ..., n. O(n(n!))

 Note: Assume printing one value takes O(1) time.

(h) Running a floodfill on an n x n array. (Note: an example of a O(n2)

 floodfill is the recursive clear in Minesweeper.)

(i) Searching for a number in a sorted array of n numbers. O(lg n)

(j) Deleting the first element of a linked list of n elements. O(1)

Grading: 1 pt each per answer

Summer 2014 Computer Science Exam, Part B

Page 3 of 6

2) (10 pts) ANL (Algorithm Analysis)

(a) (5 pts) An algorithm for sorting student records runs in θ(n2) time. It takes 20 ms to sort 10,000

student records. How much time will it take, approximately, in ms, to sort 40,000 student records?

Let T(n) = cn2, be the run-time of the algorithm for input size n, for some constant c.

We know that T(10000) = c(10000)2 = 20 ms, so c =
20

108 = 2 × 10−7 𝑚𝑠. (Grading: 2 pts, no need to

simplify.)

T(40000) = c(40000)2 = 2 × 10−7𝑚𝑠 × 16 × 108 = 320𝑚𝑠 (Grading: 3 pts)

(b) (5 pts) An algorithm for finding a valid schedule of n events runs in θ((n+1)!) time. For n = 10, the

algorithm takes 50 ms. How long will it take, in seconds, approximately, to run on an input with n = 12?

Let T(n) = c(n+1)!, be the run-time of the algorithm for input size n, for some constant c.

We know that T(10) = c(11!) = 50 ms. (Grading 1 pt)

T(12) = c(13!) = c(13)(12)(11!) = (c(11!))(156) = (50 ms)(156) = 7800 ms = 7.8 seconds. (Grading: 3

pts to get 7800 ms, 1 pt to convert to seconds.)

Summer 2014 Computer Science Exam, Part B

Page 4 of 6

3) (10 pts) DSN (Linked Lists)

Write a function, getValue, that takes in a pointer to the front of a linked list storing an integer, with

one digit stored in each node and returns the value of the number represented by the linked list. You may

assume that the length of the initial linked list passed to the function is in between 0 and 9 items (so no

need to worry about overflow), and that the digit field of each struct is in between 0 and 9, inclusive.

(Note: An empty linked list has value 0.)

Use the struct definition provided below.

typedef struct node {

 int digit;

 struct node* next;

} node;

int getValue(node* number) {

 int total = 0; // 1 pt

 while (number != NULL) { // 2 pts

 total = 10*total + number->digit; // 4 pts

 number = number->next; // 2 pts

 }

 return total; // 1 pt

// 4 pt line is as follows: 1 pt for 10* 1 pt for + 2 pts for

// number->digit.

}

Summer 2014 Computer Science Exam, Part B

Page 5 of 6

4) (10 pts) DSN (Binary Trees)

The depth of a node in a binary tree is the distance of that node from the root. Write a recursive function

that takes in a pointer to the root of a binary tree and returns the sum of the depths of the nodes of the

tree. (For example, a complete binary tree of 7 nodes has 1 node with depth 0, 2 nodes with depth 1 and

4 nodes with depth 2, for a sum of depths of nodes of 0 + 2(1) + 4(2) = 10. Use the struct definition and

function prototype given below. You may also assume that curDepth in sumDepthRec represents the

depth of root within the whole binary tree.

typedef struct treenode {

 int data;

 struct treenode *left;

 struct treenode *right;

} treenode;

double sumDepth(treenode* root) {

 return sumDepthRec(root, 0);

}

double sumDepthRec(treenode* root, int curDepth) {

 // Grading: 3 pts

 if (root == NULL) return 0;

 // Grading: 1 pt return, 2 pts curDepth, 2 pts recLeft,

 // 2 pts recRight

 return curDepth + sumDepthRec(root->left, curDepth+1) +

 sumDepthRec(root->right, curDepth+1);

}

Summer 2014 Computer Science Exam, Part B

Page 6 of 6

5) (10 pts) ALG (Sorting)

(a) (5 pts) Consider sorting the array below using Insertion Sort. Show the contents of the array after

each iteration of the outer loop.

Original 12 8 9 1 6 4

1st iteration 8 12

9 1 6 4

2nd iteration 8 9 12 1 6 4

3rd iteration 1

8 9 12 6 4

4th iteration 1

6 8 9 12 4

5th iteration 1

4 6 8 9 12

Grading: 1 pt per line, to get the point, the line must be perfectly correct.

(b) (5 pts) Show the result of running an in-place partition using index 0 as the partition element on the

array shown below. (Note: Recall that in this algorithm, we use low and high index variables, sweeping

through both sides until the low and high indexes cross over.)

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Values 45 48 83 7 1 77 37 61 39 75 54 23 64 42 65 93

Depending on which in-place partition is used, there are various possible answers. Three are provided

below. Follow the grading criteria presented.

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sol 1 37 42 23 7 1 39 45 61 77 75 54 83 64 48 65 93

Sol 2 42 23 39 7 1 37 45 61 83 75 54 48 64 93 65 77

Sol 3 7 1 37 39 23 42 45 61 93 75 54 48 64 77 65 83

Grading: 1 pt for having 45 in the correct location, 2 pts for everything in indexes 0 – 5 being less than

45 and 2 pts for everything in indexes 7 – 15 being greater than 45.

