Computer Science Foundation Exam

August 9, 2013

Section II A

DISCRETE STRUCTURES

SOLUTION

NO books, notes, or calculators may be used, and you must work entirely on your own.

Question	Max Pts	Category	Passing	Score
$\mathbf{1}$	$\mathbf{1 5}$	PRF (Induction)	$\mathbf{1 0}$	
2	$\mathbf{1 0}$	PRF (Logic)	$\mathbf{6}$	
3	$\mathbf{1 5}$	PRF (Sets)	$\mathbf{1 0}$	
$\mathbf{4}$	$\mathbf{1 0}$	NTH (Number Theory)	$\mathbf{6}$	
ALL	$\mathbf{5 0}$	--	$\mathbf{3 2}$	

You must do all 4 problems in this section of the exam.
Problems will be graded based on the completeness of the solution steps and not graded based on the answer alone. Credit cannot be given unless all work is shown and is readable. Be complete, yet concise, and above all be neat.

1) (15 pts) PRF (Induction)

Use mathematical induction to prove the following statement is true for integers $\mathrm{n} \geq 0$:

$$
3 \mid n^{3}-n
$$

Solution

Base Case: $\quad \mathrm{n}=0$.

$$
\begin{aligned}
& n^{3}-n=(0)^{3}-0=0 \\
& 3 \mid 0=0
\end{aligned}
$$

Because 3 divides evenly into $\mathrm{n}^{3}-\mathrm{n}$ when n is 0 the base case is shown to be true.
1 pt for using the correct base value 2 pts for showing the base case holds.

Inductive Hypothesis: Assume for an arbitrary positive integer $n=k$ that $3 \mid k^{3}-k(\mathbf{2} \mathbf{p t s})$
Inductive Step: Prove for $n=k+1$ that $3 \mid(k+1)^{3}-(k+1)$.
(2 pts)
$(k+1)^{3}-(k+1)=k^{3}+3 k^{2}+3 k+1-(k+1)$
$=k^{3}+3 k^{2}+3 k+1-k-1$
$=k^{3}-k+3 k^{2}+3 k$
$=\left(k^{3}-k\right)+3\left(k^{2}+k\right)$
(1 pt)
$3 \mid \mathrm{k}^{3}-\mathrm{k} \quad$ by the inductive hypothesis $\quad(\mathbf{1} \mathbf{~ p t})$
$3 \mid 3\left(k^{2}+k\right) \quad$ definition of divides
(1 pt)
If $3 \mid a$ and $3 \mid b$, then $3 \mid(a+b)$, by the properties of divisibility. ($\mathbf{1} \mathbf{p t})$
Thus, $3 \mid(\mathrm{k}+1)^{3}-(\mathrm{k}+1)$
(3 pts)
2) (10 pts) PRF (Logic)

Use the Rules of Inference and the Law of Contraposition to determine if the following argument is valid. Show each step and state which rule is being used.
$\mathrm{p} \vee \mathrm{q}$
$\neg \mathrm{r} \rightarrow \neg \mathrm{p}$
$\mathrm{r} \rightarrow \mathrm{s}$
$\neg \mathrm{q}$
s

Solution
Step

Rule	
Premise	$(1 \mathbf{p t})$
Premise	$(1 \mathbf{p t})$
Disjunctive Syllogism (1, 2)	$(1 \mathbf{p t})$
Premise	$(1 \mathbf{p t})$
Contraposition (4)	$(1 \mathbf{p t})$
Modus ponens $(3,5)$	$(2 \mathrm{pts})$
Premise	$(1 \mathbf{p t})$
Modus Ponens $(6,7)$	$(2 \mathrm{pts})$

3) $(15 \mathrm{pts}) \mathrm{PRF}$ (Sets)

Let A and B be finite sets of integers. Prove that $\overline{\mathrm{A} \cap \mathrm{B}}=\bar{A} \cup \bar{B}$ by:
a) completing a membership table AND
b) giving a proof using logical equivalence. (Note: this means showing that
$\{\mathrm{x} \mid \mathrm{x} \in \overline{\mathrm{A} \cap \mathrm{B}}\}$ and $\{\mathrm{x} \mid \mathrm{x} \in \bar{A} \cup \bar{B}\}$
are describing the same set from logical first principles.

Solution (a)

A	B	\bar{A}	\bar{B}	$\mathrm{~A} \cap \mathrm{~B}$	$\overline{\mathrm{~A} \cap \mathrm{~B}}$	$\bar{A} \cup \bar{B}$
0	0	1	1	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	1	0	0

Award 1 point per column for a total of 5 points.

Solution (b)

$$
\begin{align*}
& \overline{A \cap B}=\{x \mid x \in \overline{A \cap B}\} \\
& =\{x \mid x \notin A \cap B\} \\
& =\{x \mid \neg(x \in A \cap B)\} \\
& \text { (1 pt) } \\
& \text { (1 pt) } \\
& =\{x \mid \neg(x \in A \wedge x \in B)\} \\
& \text { (1 pt) } \\
& =\{x \mid \neg(x \in A) \vee \neg(x \in B)\} \\
& =\{x \mid x \notin A \vee x \notin B\} \\
& \text { (1pt) } \\
& \text { (1 pt) } \\
& =\{\mathrm{x} \mid \mathrm{x} \in \bar{A} \vee \mathrm{x} \in \bar{B}\} \\
& \text { (1 pt) } \\
& =\{\mathrm{x} \mid \mathrm{x} \in \bar{A} \cup \bar{B}\} \tag{1pt}\\
& \text { (1 pt) } \\
& =\bar{A} \cup \bar{B} \text {. } \\
& \text { (1 pt) }
\end{align*}
$$

4) (10 pts) NTH (Number Theory)
(a) (3 pts) Determine the number of integers in the set $\{1,2,3, \ldots, 15\}$ that are relatively prime with respect to 15 . Note: In order for two integers a and b to be relatively prime with respect to each other, $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$. Simply list all of these integers and then give the answer to the question. Put a box around your final answer.

The following integers in the given set are relatively prime with 15:
$1,2,4,7,8,11,13,14$.
Thus, there are 8 integers in the set relatively prime with 15. (Grading: $\mathbf{3}$ pts for a correct answer, 2 pts if off by $1,1 \mathrm{pt}$ if off by 2,0 pts otherwise, the list of numbers isn't necessary.)
(b) (7 pts) Prove that for any integer n that can be represented as the product of two distinct primes p and q, that the number of integers in the set $\{1,2,3, \ldots, n\}$ that are relatively prime to n is $(\mathrm{p}-1)(\mathrm{q}-1)$. (Hint: Use the inclusion-exclusion principle.)

There are n integers in the given set.
Of these, \mathbf{p} of them, $\mathbf{q}, \mathbf{2 q}, \mathbf{3 q}, \ldots, p q$ share a common factor with q and should not be included in our final count. (2 pts)

Of these, q of them, $p, 2 p, 3 p, \ldots, p q$ share a common factor with p and should not be included in our final count. (2 pts)

Of these 1 of them, $p q$ is divisible by both p and q, sharing a factor with both. ($1 \mathbf{p t}$)
Thus, using the subtraction principle and the inclusion-exclusion principle, we determine the total number of values in the list that don't share a common factor with \mathbf{n} are:
$\mathbf{n}-\mathbf{p}-\mathbf{q}+\mathbf{1}=\mathbf{p q}-\mathbf{p}-\mathbf{q}+\mathbf{1}=(\mathbf{p}-\mathbf{1})(\mathbf{q}-\mathbf{1}) .(2 \mathbf{p t s})$

