
Page 1 of 6

Computer Science Foundation Exam

 August 13, 2010

Section I B

COMPUTER SCIENCE

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name:

PID:

Question # Max Pts Category Passing Score

1 10 ANL 7

2 10 DSN 7

3 10 DSN 7

4 10 ALG 7

5 10 ALG 7

TOTAL 50

You must do all 5 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat.

KEY

Page 2 of 6

1) (10 x 1 pt): Analysis

Indicate the time complexity for each of the following operations in terms of Big-O notation,

assuming that efficient implementations are used. Give the worst case complexities. Following

notations are being used:

AINC is an array containing n integers arranged in increasing order.

AD is an array containing n integers arranged in decreasing order.

AR is an array containing n integers in random order.

Q is a queue implemented as a linked list and containing p elements.

LINK is a linked list containing n nodes.

CIRC is a circular linked list containing n elements, where C points to the last element.

T is a binary search tree containing n nodes.

a) Searching for an element in AINC using linear search. ___ O(n) ______

b) Deleting the 10
th

 node of linked list LINK. ____O(1) ______

c) Calling a function which uses Q, and calls dequeue m times. ___ O(m) _______

d) Inserting an element at the end of the list CIRC. ____ O(1) ______

e) Deleting the last element of CIRC. ____ O(n) ______

f) Finding the largest element of T. _____O(n) _____

g) Determining the height of T. ____ O(n) ______

h) Making the call selectionsort (AINC, n). ____ O(n
2
) ______

i) Making two calls one after another. The first call is

mergesort(AD,n), followed by the call insertionsort(AD,n). _____ O(nlgn) _____

j) Converting a decimal integer num into its binary equivalent. ___ O(log num) _______

Grading: 1 pt each no partial credit.

Page 3 of 6

2) (10 points) Binary Trees

 Write a recursive function that will find the height of a binary tree. The height of an empty tree is

defined as -1. The height of a single node tree is defined as 0.

struct treeNode {

 int data;

 struct treeNode *left, *right:

};

 int height (struct treeNode *ptr) {

One possible solution is:

int height (struct treeNode *ptr)

{

 int leftheight, rightheight;

 if (ptr == NULL) // 1 pt

 return -1; // 1 pt

 else

 { leftheight = height(ptr->left); // 2 pts

 rightheight = height(ptr->right); // 2 pts

 if (leftheight > rightheight) // 2 pts

 return(leftheight + 1); // 1 pt

 else

 return(rightheight + 1); // 1 pt

 }

}

}

Page 4 of 6

3) (10 points) Linked Lists

Write a function which accepts a linear linked list J and converts it into a circular linked list. The

function should return a pointer to the last element. The function prototype is provided for you below.

The node structure is as follows:

struct listNode {

 int data;

 struct listNode *next;

};

struct listNode * convert (struct listNode * J)

{

 if (J == NULL) // 1 pt

 return NULL; // 1 pt

 struct listNode * temp = J; // 1 pt

 while (temp -> next != NULL) // 2 pts

 temp = temp->next; // 2 pt

 temp->next = J; // 2 pts

 return temp; // 1 pt

}

Page 5 of 6

4) (10 points) Binary Trees

Given the binary tree shown below, determine the order in which the nodes of the binary tree shown

above are visited assuming the function A(root) is invoked. Assume that the tree nodes and pointers are

defined as shown. Assume that root is a pointer to the node containing 60. Place your answers in the

boxes provided.

struct treeNode{

 int data;

 struct treeNode *left, *right:

}

struct treeNode *tree_ptr;

void A(struct treeNode *node_ptr){

 if (node_ptr != NULL){

 printf(“%d ,”,node_ptr->data);

 B(node_ptr->left);

 B(node_ptr->right);

 }

}

void B(struct treeNode *node_ptr){

 if (node_ptr != NULL) {

 A(node_ptr->left);

 printf(“%d ,”,node_ptr->data);

 A(node_ptr->right);

 }

}

ANSWER:

Grading: 1 pt per slot, no partial credit.

60

30 90

5 38 77

8 62 88 32

60 5 8 30 38 32 77 62 88 90

Page 6 of 6

5) (10 points) Linked Lists Consider the linked list shown below where pList points to the node

containing the value 3. Redraw the list showing the changes to the list after the following code is

executed

 pCur= pList;

 while (pCur->next->next != NULL)

 pCur = pCur->next;

 pCur->next->next = pList;

 pList = pCur->next;

 pCur->next = NULL;

 pCur = NULL;

SOLUTION:

Grading: pList pointing to 5 (2 pts)

 5 attached to 3 (3 pts)

 4’s next being null (3 pts)

 Whole list being intact (2 pt)

pList

3

2

5

7 6 1 2 8 4 5 null

pList

5

2

5

3 7 6 1 2 8 4 null

