Computer Science Foundation Exam

August 14, 2009

Section II A

DISCRETE STRUCTURES SOLUTIONS

NO books, notes, or calculators may be used, and you must work entirely on your own.

Name: _____

PID: _____

In this section of the exam, there are three (3) problems. You must do <u>ALL</u> of them. They count for 40% of the Discrete Structures exam grade. Show the steps of your work carefully.

Problems will be graded based on the completeness of the solution steps and <u>not</u> graded based on the answer alone.

Credit cannot be given when your results are unreadable.

Question #	Max Pts	Category	Passing	Score
1	15	PRF (Induction)	10	
2	15	PRF (Sets)	10	
3	10	PRF (Logic)	6	
ALL	40		26	

1) (15 pts) PRF (Induction)

Using proof by induction on n, prove that $8 | (3^{2n+1} + 5^{2n+1})$ for all non-negative integers n.

Base case: $n=0.3^{2(0)+1} + 5^{2(0)+1} = 3 + 5 = 8$. Since 8 | 8, the base case holds. (2 pts)

Inductive hypothesis: Assume for an arbitrary non-negative integer n = k that $8 | (3^{2k+1} + 5^{2k+1})$, namely that there exists some integer c such that $8c = 3^{2k+1} + 5^{2k+1}$. (2 pts)

Inductive step: Prove that for n = k+1 that $8 \mid (3^{2(k+1)+1} + 5^{2(k+1)+1})$. (Namely, prove that there exists some integer d such that $8d = 3^{2(k+1)+1} + 5^{2(k+1)+1}$.) (2 pts)

Summer 2009

2) (15 pts) PRF (Sets)

Use set laws to prove that the two following sets are equivalent.

(1)
$$A \cup B$$
 (2) $(A \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap B)$

$(A \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap B) = (A \cap (B \cup \overline{B})) \cup (\overline{A} \cap B)$, Distributive Law	(3 pts)
$=(A \cap U) \cup (\overline{A} \cap B)$, Inverse Law	(2 pts)
$=A \cup (\overline{A} \cap B)$, Identity Law	(2 pts)
$=(A \cup \overline{A}) \cap (A \cup B)$, Distributive Law	(3 pts)
$=U \cap (A \cup B)$, Inverse Law	(2 pts)
$= A \cup B$, Identity Law	(3 pts)

3) (10 pts) (PRF) Logic

Use the Laws of Logic and Rules of Inference to justify the following argument:

 $p \lor q$ $p \to r$ $q \to s$ $(r \lor s) \to t$ $t \to (u \land v)$

 $\therefore v$

Please name the Law of Logic or Rule of Inference used in each step of your proof.

1. $p \rightarrow r$	Premise
2. $q \rightarrow s$	Premise
3. $p \lor q$	Premise
4. $r \lor s$	Rule of Constructive Dilemma with (1), (2), (3)
5. $(r \lor s) \rightarrow t$	Premise
6. <i>t</i>	Rule of Detachment(Modus Ponens) with (4), (5)
7. $t \rightarrow (u \land v)$	Premise
8. $u \wedge v$	Rule of Detachment(Modus Ponens) with (6), (7)
9. v	Rule of Conjunctive Simplification with (8)

Grading: 1 point per step with a 1 point bonus for getting everything correct.