Computer Science Foundation Exam

August 14, 2009

Computer Science

Section 1A

Name:

PID:

	Max Pts	Туре	Passing Threshold	Student Score
Q1	11	DSN	8	
Q2	10	ANL	7	
Q3	10	ALG	7	
Q4	10	ALG	7	
Q5	9	ALG	6	
Total	50		35	

You must do all 5 problems in this section of the exam.

Partial credit cannot be given unless all work is shown and is readable. Be complete, yet concise, and above all <u>be neat</u>. Do your rough work on the last page.

1) (11 points) **Recursion** Write a **recursive** function that prints the contents of a linked list in reverse order. Make use of the list node struct and function header below.

```
struct listnode {
    int data;
    struct listnode* next;
};
void print_reverse(struct listnode* head)
{
Solution:
    if(head == NULL)
        return;
    print reverse(head->next);
```

printf("%d ", head->data);

Grading Criteria:

There are many ways to approach this problem. Be reasonable when grading. Base case -3 points Printing the node in the proper place in the function -4 points Making a proper recursive call -4 points

2) (10 points) Summations

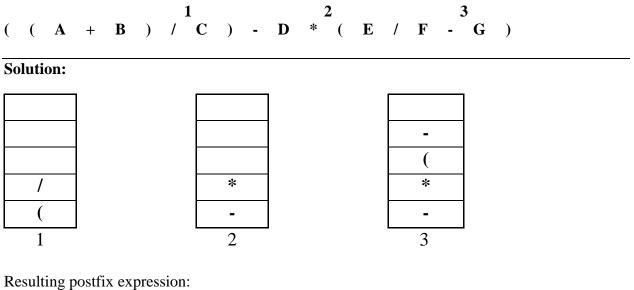
a) Consider the following code fragment:

```
prod = 0;
for(i = 0; i <= n + 7; i++) {
    prod = prod * 5 * i;
    for(j = i - 5; j <= i + 5; j++) {
        prod = prod * n * j * 3;
    }
}
```

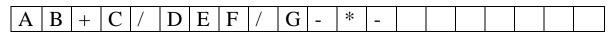
Write, but don't solve, a summation to describe the number of multiplications performed by that code fragment in terms of the variable n.

b) Obtain a simplified closed form solution for the following summation:

$\sum_{i=1}^{n} \left(3\sum_{j=1}^{n} 2^{i}j\right)$ Solution: a) $\sum_{i=0}^{n+7} \left(2 + \sum_{j=i-5}^{i+5} 3\right)$ b) $\sum_{i=1}^{n} \left(3\sum_{j=1}^{n} 2^{i}j\right) = \sum_{i=1}^{n} \left(6^{i}\sum_{j=1}^{n}j\right) = \sum_{i=1}^{n} \left(6^{i}\frac{n(n+1)}{2}\right) = 6\frac{n(n+1)}{2}\sum_{i=1}^{n}i = 6\frac{n(n+1)}{2}\frac{n(n+1)}{2} = \frac{3n^{2}(n+1)^{2}}{2}$

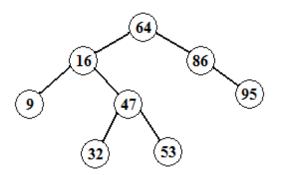

Grading Criteria:

a)

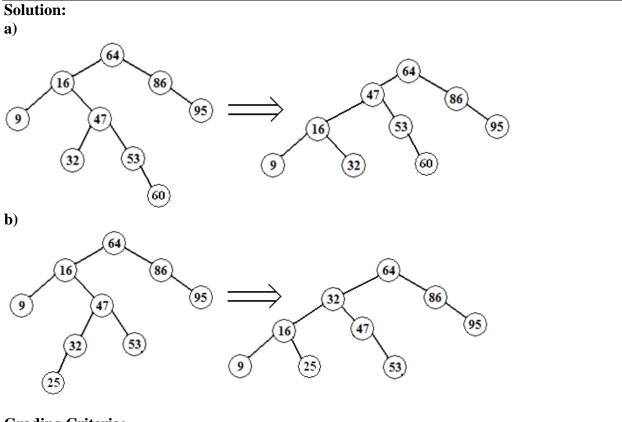

Correct bounds on the outer summation -2 points Correct bounds on the inner summation -2 points Answer is otherwise correct -1 point

b)

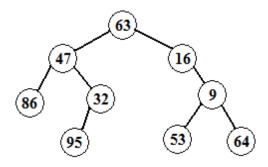
Properly dealing with the inner summation -2 points Properly dealing with the outer summation -2 points Simplifying the resulting closed form -1 point **3)** (10 points) **Stack Applications** Transform the following infix expression into its equivalent postfix expression using a stack. Show the contents of the stack at the indicated points 1, 2 and 3 in the infix expressions.



Resulting positix expression.


Grading Criteria:

Each correct stack -2 points Resulting expression -4 points 4) (10 points) AVL Trees Consider the AVL tree below:


a) Show the state of the tree after node containing the value 60 is inserted. Be sure to perform any necessary rotations.

b) Show the state of the tree after node containing the value 25 is inserted into the original tree (i.e. ignore **part a** when answering this part). Be sure to perform any necessary rotations.

Grading Criteria: 5 points per part: Preserving BST order property – 2 points Maintaining AVL balance properties – 1 point Rotating correctly – 2 points Note: Showing the pre-rotation tree is not required for a correct answer

5) (9 points) Binary Tree Traversals

Give the preorder, inorder, and postorder traversals of the binary tree shown above.

Solu	tion:							
Preo	rder:							
63	47	86	32	95	16	9	53	64
Inor	der:							
86	47	95	32	63	16	53	9	64
Post	order:							
86	95	32	47	53	64	9	16	63
Grading Criteria:								
3 points per traversal								
	•							