Computer Science Foundation Exam

August 8, 2008

Section II B

DISCRETE STRUCTURES

KEY

Question #	Category	Max	Passing	Score
		Score	Score	
Q4	CTG (Counting)	15	10	
Q5	PRF (Functions)	15	10	
Q6	PRF (Relations)	15	10	
Q7	NTH (Number	15	10	
	Theory)			
ALL		60	40	

PART B

3) (CTG) Counting

How many strings of 7 lowercase letters from the English alphabet (of 26 letters) contain

(a) (6 pts) the letter *d* at least once?

(b) (9 pts) the letters a, b, and c, in that order, with all letters distinct? For example, *daebyxc* is a valid string, because all letters are distinct, and a, b, and c appear in order within the string.

Solution.

(a) Count the strings that do not contain the letter d. There are 25^7 such strings. (3 pts)

If we subtract this number from the total number of all possible strings, which is 26^7 (2 pts), we get the number of strings with at least one *d*, namely, $26^7 - 25^7$. (1 pt)

(b) We can first count all possible ways to place a, b, and c in a 7-letter string. We must choose three slots out of seven for a, b, and c to be placed. There are C(7,3) = 35 ways to do this. Note that we use combinations instead of permutations, because the relative order of a, b, and c is fixed. (4 pts)

The second step is to choose letters for the remaining four positions without repetition. This task can be done in $23 \cdot 22 \cdot 21 \cdot 20$ different ways. (4 pts)

Thus, the final answer is $35 \cdot 23 \cdot 22 \cdot 21 \cdot 20$. The two results are multiplied (Product Rule) because each placement of *a*, *b*, and *c* can be combined with a placement of the remaining four letters to create a unique 7-letter string. (1 pt)

4) (PRF) Relations

Let $S = \{-2, -1, 0, 1\}$ and let $A = S \times S$. Define the following relation *R* on *A*: $R = \{((a, b), (c, d)) | a - b = c - d\}$

(a) (8 pts) Show that *R* is an equivalence relation.

(b) (7 pts) Find the partition A/R.

Solution.

(a) (8 pts)

R is reflexive, because for any $(a, b) \in A$ we have a - b = a - b, so $((a, b), (a, b)) \in R$. (2 pts)

R is symmetric, because if $((a, b), (c, d)) \in R$, then a - b = c - d, by the definition of *R*. But this means that c - d = a - b as well, i.e., $((c, d), (a, b)) \in R$. (3 pts)

To show that *R* is transitive let $((a, b), (c, d)) \in R$ and $((c, d), (e, f)) \in R$. We need to show that $((a, b), (e, f)) \in R$. By the given definition of *R*, $((a, b), (c, d)) \in R$ implies that a - b = c - d, and $((c, d), (e, f)) \in R$ implies that c - d = e - f. From these two equalities we have that a - b = e - f, i.e. $((a, b), (e, f)) \in R$. (3 pts)

(b) (7 pts) $A/R = \{ \{(1, -2)\}, \{(1, -1), (0, -2)\}, \{(1, 0), (0, -1), (-1, -2)\}, \{(1, 0), (0, -1), (-1, -2)\}, \{(1, 1), (0, 0), (-1, -1), (-2, -2)\}, \{(0, 1), (-1, 0), (-2, -1)\}, \{(-1, 1), (-2, 0)\}, \{(-1, 1), (-2, 0)\}, \{(-2, 1)\} \}.$

(1 pt for each of the seven equivalence classes)

5) (PRF) Functions

(15 pts) Let $f(x) = x^2 - 5x$, for all real $x \ge 5$. Find $f^{-1}(x)$ and state both the domain and range of $f^{-1}(x)$.

Solution.

Solve for *x* in the given function.

$$f(x) = x^{2} - 5x$$

$$f(x) + \frac{25}{4} = x^{2} - 5x + \frac{25}{4} \qquad (3 \text{ pts})$$

$$f(x) + \frac{25}{4} = \left(x - \frac{5}{2}\right)^{2} \qquad (3 \text{ pts})$$

$$\sqrt{f(x) + \frac{25}{4}} = x - \frac{5}{2} \qquad (3 \text{ pts})$$

$$x = \frac{5}{2} + \sqrt{f(x) + \frac{25}{4}}, \text{ thus, } f^{-1}(x) = \frac{5}{2} + \sqrt{x + \frac{25}{4}}. \qquad (2 \text{ pts})$$

Domain of $f^{-1}(x)$ is all real $x \ge 0$. (2 pts) Range of $f^{-1}(x)$ is all real $x \ge 5$. (2 pts)

6) (NTH) Number Theory

(a) (5 pts) If the product of two integers is $11^2 \cdot 13^2 \cdot 17 \cdot 19^5$ and their least common multiple is $11 \cdot 13 \cdot 17 \cdot 19^3$, what is their greatest common divisor?

(b) (10 pts) Show that gcd(486, 741) can be represented as a linear combination of 486 and 741. (In other words, find integers x and y such that 486x+741y = gcd(486, 741).)

Solution.

(a) (5 pts)

If *a* and *b* are positive integers, $a \cdot b = \gcd(a, b) \cdot \operatorname{lcm}(a, b)$. (2 pts) Thus, $\gcd(a, b) = (a \cdot b)/\operatorname{lcm}(a, b) = 11^{(2-1)} \cdot 13^{(2-1)} \cdot 17^{(1-1)} \cdot 19^{(5-3)} = 11 \cdot 13 \cdot 19^2$. (3 pts)

(b) (10 pts)

a	b	r	q
1	0	741	
0	1	486	1
1	-1	255	1
-1	2	231	1
2	-3	24	9
-19	29	15	1
21	-32	9	1
-40	61	6	1
61	-93	3	2

(1 pt for each of the nine rows of the table.)

Therefore gcd(486,741) = 3 = 486(-93) + 741(61). (1 pt)