Computer Science Foundation Exam

August 8, 2008

Section II B

DISCRETE STRUCTURES

KEY

Question \#	Category	Max Score	Passing Score	Score
Q4	CTG (Counting)	$\mathbf{1 5}$	$\mathbf{1 0}$	
Q5	PRF (Functions)	$\mathbf{1 5}$	$\mathbf{1 0}$	
Q6	PRF (Relations)	$\mathbf{1 5}$	$\mathbf{1 0}$	
Q7	NTH (Number Theory)	$\mathbf{1 5}$	$\mathbf{1 0}$	
ALL	---	$\mathbf{6 0}$	$\mathbf{4 0}$	

PART B

3) (CTG) Counting

How many strings of 7 lowercase letters from the English alphabet (of 26 letters) contain
(a) (6 pts) the letter d at least once?
(b) (9 pts) the letters a, b, and c, in that order, with all letters distinct? For example, daebyxc is a valid string, because all letters are distinct, and a, b, and c appear in order within the string.

Solution.

(a) Count the strings that do not contain the letter d. There are 25^{7} such strings. (3 pts)

If we subtract this number from the total number of all possible strings, which is 26^{7} (2 pts), we get the number of strings with at least one d, namely, $26^{7}-25^{7}$. (1 pt)
(b) We can first count all possible ways to place a, b, and c in a 7-letter string. We must choose three slots out of seven for a, b, and c to be placed. There are $\mathrm{C}(7,3)=$ 35 ways to do this. Note that we use combinations instead of permutations, because the relative order of a, b, and c is fixed.
(4 pts)
The second step is to choose letters for the remaining four positions without repetition. This task can be done in 23.22.21.20 different ways. (4 pts)

Thus, the final answer is $35 \cdot 23 \cdot 22 \cdot 21 \cdot 20$. The two results are multiplied (Product Rule) because each placement of a, b, and c can be combined with a placement of the remaining four letters to create a unique 7-letter string.
(1 pt)

4) (PRF) Relations

Let $S=\{-2,-1,0,1\}$ and let $A=S \times S$. Define the following relation R on A :

$$
R=\{((a, b),(c, d)) \mid a-b=c-d\}
$$

(a) (8 pts) Show that R is an equivalence relation.
(b) (7 pts) Find the partition A / R.

Solution.

(a) (8 pts)
R is reflexive, because for any $(a, b) \in A$ we have $a-b=a-b$, so $((a, b),(a, b)) \in R$. (2 pts)
R is symmetric, because if $((a, b),(c, d)) \in R$, then $a-b=c-d$, by the definition of R. But this means that $c-d=a-b$ as well, i.e., $((c, d),(a, b)) \in R$. (3 pts)

To show that R is transitive let $((a, b),(c, d)) \in R$ and $((c, d),(e, f)) \in R$. We need to show that $((a, b),(e, f)) \in R$. By the given definition of $R,((a, b),(c, d)) \in R$ implies that $a-b=c-d$, and $((c, d),(e, f)) \in R$ implies that $c-d=e-f$. From these two equalities we have that $a-b=e-f$, i.e. $((a, b),(e, f)) \in R$. (3 pts)
(b) (7 pts)

$$
A / R=\{\{(1,-2)\},
$$

$$
\{(1,-1),(0,-2)\},
$$

$$
\{(1,0),(0,-1),(-1,-2)\},
$$

$$
\{(1,1),(0,0),(-1,-1),(-2,-2)\}
$$

$$
\{(0,1),(-1,0),(-2,-1)\}
$$

$$
\{(-1,1),(-2,0)\}
$$

$$
\{(-2,1)\}\} .
$$

(1 pt for each of the seven equivalence classes)

5) (PRF) Functions

(15 pts) Let $f(x)=x^{2}-5 x$, for all real $x \geq 5$. Find $f^{-1}(x)$ and state both the domain and range of $f^{-1}(x)$.

Solution.

Solve for x in the given function.

$$
\begin{align*}
& f(x)=x^{2}-5 x \\
& f(x)+\frac{25}{4}=x^{2}-5 x+\frac{25}{4} \\
& f(x)+\frac{25}{4}=\left(x-\frac{5}{2}\right)^{2} \\
& \sqrt{f(x)+\frac{25}{4}}=x-\frac{5}{2} \tag{3pts}\\
& x=\frac{5}{2}+\sqrt{f(x)+\frac{25}{4}}, \text { thus, } f^{-1}(x)=\frac{5}{2}+\sqrt{x+\frac{25}{4}} \tag{2pts}
\end{align*}
$$

Domain of $f^{-1}(x)$ is all real $x \geq 0$. (2 pts)
Range of $f^{-1}(x)$ is all real $x \geq 5$. (2 pts)
6) (NTH) Number Theory
(a) (5 pts) If the product of two integers is $11^{2} \cdot 13^{2} \cdot 17 \cdot 19^{5}$ and their least common multiple is $11 \cdot 13 \cdot 17 \cdot 19^{3}$, what is their greatest common divisor?
(b) (10 pts) Show that $\operatorname{gcd}(486,741)$ can be represented as a linear combination of 486 and 741. (In other words, find integers x and y such that $486 x+741 y=\operatorname{gcd}(486,741)$.)

Solution.

(a) (5 pts)

If a and b are positive integers, $a \cdot b=\operatorname{gcd}(a, b) \cdot 1 \mathrm{~cm}(a, b)$. (2 pts)
Thus, $\operatorname{gcd}(a, b)=(a \cdot b) / \operatorname{lcm}(a, b)=11^{(2-1)} \cdot 13^{(2-1)} \cdot 17^{(1-1)} \cdot 19^{(5-3)}=11 \cdot 13 \cdot 19^{2} .(3 \mathrm{pts})$
(b) (10 pts)

a	b	r	q
1	0	741	
0	1	486	1
1	-1	255	1
-1	2	231	1
2	-3	24	9
-19	29	15	1
21	-32	9	1
-40	61	6	1
61	-93	3	2

(1 pt for each of the nine rows of the table.)
Therefore $\operatorname{gcd}(486,741)=3=486(-93)+741(61) .(1 \mathrm{pt})$

