Computer Science Foundation Exam

August 8, 2008

Section II A

DISCRETE STRUCTURES

KEY

Question \#	Category	Max Score	Passing Score	Score
Q1	PRF (Induction)	$\mathbf{2 5}$	$\mathbf{1 5}$	
Q2	PRF (Sets)	$\mathbf{1 5}$	$\mathbf{1 0}$	
Total	--	$\mathbf{4 0}$	$\mathbf{3 5}$	

PART A

1) (25 pts) PRF (Induction)

Define a sequence of numbers as follows. Let W_{i} denote the $i^{\text {th }} W$-number. In particular, $W_{0}=2, W_{1}=1$, and $W_{n}=W_{n-1}+\frac{W_{n-2}}{2}$ for all integers $n>1$.
For all positive integers n, prove that $\sum_{i=1}^{n} \frac{W_{i-1}}{W_{i} W_{i+1}}=2-\frac{2}{W_{n+1}}$.

Solution.

Base case: $n=1$. LHS $=\sum_{i=1}^{1} \frac{W_{i-1}}{W_{i} W_{i+1}}=\frac{W_{0}}{W_{1} W_{2}}=\frac{2}{1 \cdot 2}=1$, RHS $=2-\frac{2}{W_{2}}=2-\frac{2}{2}=1$. Thus
LHS $=$ RHS and the base case is proven. (4 pts)
Inductive hypothesis: Assume for an arbitrary positive integer $n=k$ that $\sum_{i=1}^{k} \frac{W_{i-1}}{W_{i} W_{i+1}}=2-\frac{2}{W_{k+1}} .(4 \mathrm{pts})$

Inductive Step: Prove for $n=k+1$ that $\sum_{i=1}^{k+1} \frac{W_{i-1}}{W_{i} W_{i+1}}=2-\frac{2}{W_{k+2}}(4 \mathrm{pts})$

$$
\begin{aligned}
\sum_{i=1}^{k+1} \frac{W_{i-1}}{W_{i} W_{i+1}} & =\left(\sum_{i=1}^{k} \frac{W_{i-1}}{W_{i} W_{i+1}}\right)+\frac{W_{k}}{W_{k+1} W_{k+2}}(2 \mathrm{pts}) \\
& =2-\frac{2}{W_{k+1}}+\frac{W_{k}}{W_{k+1} W_{k+2}}, \text { using the inductive hypothesis (3 pts) } \\
& =2-\frac{2 W_{k+2}}{W_{k+1} W_{k+2}}+\frac{W_{k}}{W_{k+1} W_{k+2}}(1 \mathrm{pt}) \\
& =2-\left(\frac{2 W_{k+2}-W_{k}}{W_{k+1} W_{k+2}}\right)(1 \mathrm{pt}) \\
& =2-\frac{2 W_{k+1}}{W_{k+1} W_{k+2}}, \text { since } 2 W_{k+2}=2\left(W_{k+1}+\frac{W_{k}}{2}\right)=2 W_{k+1}+W_{k} .(3 \mathrm{pts}) \\
& =2-\frac{2}{W_{k+2}} \cdot(1 \mathrm{pt})
\end{aligned}
$$

The inductive step is complete. We have proven by induction that $\sum_{i=1}^{n} \frac{W_{i-1}}{W_{i} W_{i+1}}=2-\frac{2}{W_{n+1}}$ for all positive integers n. (2 pts)
2) (15 pts) PRF (Sets)

Let A, B and C be arbitrary sets taken from the positive integers.
Prove or disprove: If $A \cap B \cap C=\varnothing$, then $(A \subseteq \bar{B}) \vee(A \subseteq \bar{C})$.

Solution.

$A \cap B \cap C=\varnothing$ is the premise.
$\neg \exists x, x \in A \cap B \cap C$ by definition of the empty set.
$\forall x, \neg[x \in A \cap B \cap C]$ by negation of \exists.
$\forall x, \neg[x \in(A \cap B) \cap C]$ by the associative property of intersection.
$\forall x,-[(x \in A \cap B) \wedge(x \in C)]$ by the definition of intersection.
$\forall x, \neg(x \in A \cap B) \vee \neg(x \in C)$ by DeMorgan's Laws.
$\forall x, \neg[(x \in A) \wedge(x \in B)] \vee \neg(x \in C)$ by the definition of intersection.
$\forall x,[\neg(x \in A) \vee \neg(x \in B)] \vee \neg(x \in C)$ by DeMorgan's Laws.
$\forall x, \neg(x \in A) \vee \neg(x \in B) \vee \neg(x \in C)$ by the associative property of intersection.
$\forall x,(x \notin A) \vee(x \notin B) \vee(x \notin C)$ by negation of \in.
(6 pts)
For some arbitrary element y, assume $y \in A$.
$\neg(y \notin A)$ by double negation.
$(y \notin A) \vee(y \notin B) \vee(y \notin C)$ by application of \forall in $\forall x,(x \notin A) \vee(x \notin B) \vee(x \notin C)$.
$(y \notin A) \vee[(y \notin B) \vee(y \notin C)]$ by the associative property of \vee.
$(y \notin B) \vee(y \notin C)$ by disjunctive syllogism.
$(y \in \bar{B}) \vee(y \in \bar{C})$ by definition of set complement.
(4 pts)
Case 1: $(y \in \bar{B})$.
$(y \in A) \rightarrow(y \in \bar{B})$.
$A \subseteq \bar{B}$ by definition of subset.
(2 pts)
Case 2: $(y \in \bar{C})$.
$(y \in A) \rightarrow(y \in \bar{C})$.
$A \subseteq \bar{C}$ by definition of subset.
(2 pts)
$(A \subseteq \bar{B}) \vee(A \subseteq \bar{C})$ by combining the two cases.
(1 pt)

