Computer Science Foundation Exam

August 8, 2008

Section II A

DISCRETE STRUCTURES

KEY

Question #	Category	Max	Passing	Score
		Score	Score	
Q1	PRF	25	15	
	(Induction)			
Q2	PRF (Sets)	15	10	
Total		40	35	

PART A

1) (25 pts) PRF (Induction)

Define a sequence of numbers as follows. Let W_i denote the i^{th} W-number. In particular, $W_0 = 2$, $W_1 = 1$, and $W_n = W_{n-1} + \frac{W_{n-2}}{2}$ for all integers n > 1. For all positive integers n, prove that $\sum_{i=1}^n \frac{W_{i-1}}{W_i W_{i+1}} = 2 - \frac{2}{W_{n+1}}$.

Solution.

Base case: n = 1. LHS = $\sum_{i=1}^{1} \frac{W_{i-1}}{W_i W_{i+1}} = \frac{W_0}{W_1 W_2} = \frac{2}{1 \cdot 2} = 1$, RHS = $2 - \frac{2}{W_2} = 2 - \frac{2}{2} = 1$. Thus LHS = RHS and the base case is proven. (4 pts)

Inductive hypothesis: Assume for an arbitrary positive integer n = k that $\sum_{i=1}^{k} \frac{W_{i-1}}{W_{i}W_{i+1}} = 2 - \frac{2}{W_{k+1}} \cdot (4 \text{ pts})$

Inductive Step: Prove for n = k + 1 that $\sum_{i=1}^{k+1} \frac{W_{i-1}}{W_i W_{i+1}} = 2 - \frac{2}{W_{k+2}}$ (4 pts)

$$\sum_{i=1}^{k+1} \frac{W_{i-1}}{W_i W_{i+1}} = \left(\sum_{i=1}^k \frac{W_{i-1}}{W_i W_{i+1}}\right) + \frac{W_k}{W_{k+1} W_{k+2}}$$
(2 pts)

$$= 2 - \frac{2}{W_{k+1}} + \frac{W_k}{W_{k+1}W_{k+2}}, \text{ using the inductive hypothesis (3 pts)}$$

$$= 2 - \frac{2W_{k+2}}{W_{k+1}W_{k+2}} + \frac{W_k}{W_{k+1}W_{k+2}} (1 \text{ pt})$$

$$= 2 - \left(\frac{2W_{k+2} - W_k}{W_{k+1}W_{k+2}}\right) (1 \text{ pt})$$

$$= 2 - \frac{2W_{k+1}}{W_{k+1}W_{k+2}}, \text{ since } 2W_{k+2} = 2\left(W_{k+1} + \frac{W_k}{2}\right) = 2W_{k+1} + W_k. (3 \text{ pts})$$

$$= 2 - \frac{2}{W_{k+2}}. (1 \text{ pt})$$

The inductive step is complete. We have proven by induction that $\sum_{i=1}^{n} \frac{W_{i-1}}{W_{i}W_{i+1}} = 2 - \frac{2}{W_{n+1}}$ for all positive integers *n*. (2 pts)

2) (15 pts) PRF (Sets)

Let A, B and C be arbitrary sets taken from the positive integers.

Prove or disprove: If $A \cap B \cap C = \emptyset$, then $(A \subseteq \overline{B}) \lor (A \subseteq \overline{C})$.

Solution.

 $A \cap B \cap C = \emptyset \text{ is the premise.}$ $\neg \exists x, x \in A \cap B \cap C \text{ by definition of the empty set.}$ $\forall x, \neg [x \in A \cap B \cap C] \text{ by negation of } \exists.$ $\forall x, \neg [x \in (A \cap B) \cap C] \text{ by the associative property of intersection.}$ $\forall x, \neg [(x \in A \cap B) \land (x \in C)] \text{ by the definition of intersection.}$ $\forall x, \neg [(x \in A \cap B) \lor \neg (x \in C) \text{ by DeMorgan's Laws.}$ $\forall x, \neg [(x \in A) \land (x \in B)] \lor \neg (x \in C) \text{ by the definition of intersection.}$ $\forall x, [\neg (x \in A) \lor \neg (x \in B)] \lor \neg (x \in C) \text{ by DeMorgan's Laws.}$ $\forall x, \neg (x \in A) \lor \neg (x \in B)] \lor \neg (x \in C) \text{ by the associative property of intersection.}$ $\forall x, (x \notin A) \lor (x \notin B) \lor (x \notin C) \text{ by negation of } \in.$ (6 pts)

For some arbitrary element y, assume $y \in A$.

 \neg (*y* \notin *A*) by double negation.

 $(y \notin A) \lor (y \notin B) \lor (y \notin C)$ by application of \forall in $\forall x, (x \notin A) \lor (x \notin B) \lor (x \notin C)$.

 $(y \notin A) \lor [(y \notin B) \lor (y \notin C)]$ by the associative property of \lor .

 $(y \notin B) \lor (y \notin C)$ by disjunctive syllogism.

 $(y \in \overline{B}) \lor (y \in \overline{C})$ by definition of set complement. (4 pts)

Case 1: $(y \in \overline{B})$. $(y \in A) \rightarrow (y \in \overline{B})$. $A \subseteq \overline{B}$ by definition of subset. (2 pts)

Case 2: $(y \in \overline{C})$. $(y \in A) \rightarrow (y \in \overline{C})$. $A \subseteq \overline{C}$ by definition of subset. (2 pts)

 $(A \subseteq \overline{B}) \lor (A \subseteq \overline{C})$ by combining the two cases. (1 pt)