
 Computer Science Part B KEY

 Page 1 of 6

Computer Science Foundation Exam

August 8 , 2008

Computer Science

Section 1B

Name:

SSN:

 Max

Pts

Passing

Pts

Category Score

Q1 10 6 KNW

Q2 8 4 CMP

Q3 12 8 ANL

Q4 8 6 DSN

Q5 12 8 DSN

Total 50 32

You have to do all the 5 problems in this section of the exam.

Partial credit cannot be given unless all work is shown and is readable.

Be complete, yet concise, and above all be neat.

KEY

 Computer Science Part B KEY

 Page 2 of 6

1. [10 pts] Circle the correct choices in each of the following parts:

(i) The worst case complexity of searching for a value in an unsorted array of n integers

is

 a) O(1) b) O(log n) c) O(n) d) O(n log n)

(ii) The worst case complexity of dequeuing one item from a queue using an array

implementation is

 a) O(1) b) O(log n) c) O(n) d) O(n log n)

(iii) The time complexity of attaching a linked list containing k elements at the end of

another linked list containing j elements would be

 a) O(j) b) O(k) c) O(j+k) d) O(jk)

(iv) The status of function calls during the execution of a computer program is best

modeled using which of the following

 a) stack b) queue c) binary search tree

(v) An infix expression is being converted to its postfix form using a stack. The character

read from the expression is ‘+‘ and the stack contains the following elements.

*

/

If the character read from the expression is ‘+‘, the stack should look like

Answer: b (Grading: 2 pts each)

+

* + +

/ + / *

a b c d

 Computer Science Part B KEY

 Page 3 of 6

2. [8 pts] Trace the following function when it is called from the main program

through, simple(113), and give the final value returned to main().

int simple (int n)

{

 if (n < 2) return n;

 else

 return n%2 + simple(n/2);

}

simple(113) =

1 + simple(56) =

1 + 0 + simple(28) =

1 + 0 + 0 + simple(14) =

1 + 0 + 0 + 0 + simple(7) =

1 + 0 + 0 + 0 + 1 + simple(3) =

1 + 0 + 0 + 0 + 1 + 1 + simple(1) =

1 + 0 + 0 + 0 + 1 + 1 + 1 =

4

Grading: 1 pt for each step

 Computer Science Part B KEY

 Page 4 of 6

3. [12 pts] Write the recurrence relation for this function and work out the worst case

time complexity for it, using the iteration technique.

1 int modpower(int a,int n,int mod) {

2 if (n == 0) return 1;

3 if (n == 1) return a%mod;

4 answer = power(a, n/2, mod);

5 if (n%2 == 0)

6 return (answer*answer)%mod;

7 else

8 return (answer*answer*a)%mod;

9 }

Let T(n) represent the running time of this function, where n represents the

exponent in the problem. Then we have the following recurrence relation:

T(n) = T(n/2) + O(1) (3 pts)

because whenever the function is called with the parameter n, a single call is made

to the function with a parameter n/2, plus a constant amount of work. We solve this

recurrence relation using iteration:

T(n) = T(n/2) + 1

 = T(n/4) + 1 + 1 (1 pt)

 = T(n/8) + 1 + 1 + 1 (2 pt)

From here, we deduce the general pattern after k iterations:

 = T(n/2
k
) + k (3 pts)

We want to iterate until we get to T(1). This occurs when n/2
k
 = 1. Thus, we find

that n = 2
k
 and k = log 2 n. (2 pts)

Thus, we find the solution to be

T(n) = T(1) + log 2 n = 1 + log 2 n = O(lg n). (2 pts)

 Computer Science Part B KEY

 Page 5 of 6

4. [8 pts] Develop a RECURSIVE function that accepts an integer num, and prints out

in order the disk numbers that are moved for the optimal Towers of Hanoi solution with

num disks total. For example, if num is 3, then the function should print the following

sequence: 1213121

If num is 4, the the function should print: 121312141213121

void hanoi(int num)
{

if (num > 0) { // 2 pts

 hanoi(num-1); // 2 pts

 printf("%d",num); // 2 pts

 hanoi(num-1); // 2 pts

}

}

 Computer Science Part B KEY

 Page 6 of 6

5. [12 pts] A circular linked list has a struct defined as follows:

struct circLL {

 int data;

 struct circLL *next;

};

Write a function that deletes the first node in a circular linked list. In particular, your

function should return a pointer to the front of the adjusted list. If the original list has no

elements, then NULL should be returned. Make sure to free the memory for the deleted

node.

struct circLL* deleteFront(struct circLL* front) {

if (front == NULL) return NULL; // 2 pts

if (front->next == front) { // 1 pt

 free(front); // 1 pt

 return NULL; // 1 pt

}

struct circLL* last = front; // 1 pt

while (last->next != front) // 2 pts

 last = last->next; // 1 pt

last->next = front->next; // 1 pt

free(front); // 1 pt

return last->next; // 1 pt

}

