
Page 1 of 4

Computer Science Foundation Exam

January 14, 2023

Section A

BASIC DATA STRUCTURES

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: __

UCFID: __

Question # Max Pts Category Score

1 10 DSN

2 10 DSN

3 5 ALG

TOTAL 25 ----

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that

particular question have been made.

Spring 2023 Section A: Basic Data Structures

Page 2 of 4

1) (10 pts) DSN (Dynamic Memory Management in C)

Using 0-based indexing, on row i of Pascal’s Triangle, there are i+1 positive integer values. One way we

can efficiently store the triangle is to allocate the correct amount of memory for each row. Here is a picture

of the first five rows of the triangle (rows 0 through 4, inclusive.):

If the name of the array is tri, then the rule to fill in the entries in the table are as follows:

tri[i][0] = 1, for all positive ints i

tri[i][i] = 1, for all positive ints i

tri[i][j] = tri[i-1][j-1]+tri[i-1][j], for all ints j, 0 < j < i

Write a function that takes in an integer, n, dynamically allocates an array of n arrays, where the ith array

(0-based) is allocated to store exactly i+1 ints, fills the contents of the array with the corresponding values

of Pascal’s Triangle as designated above, and returns a pointer to the array of arrays. You may assume

that 1 < n < 31.

int** getPascalsTriangle(int n) {

}

Spring 2023 Section A: Basic Data Structures

Page 3 of 4

2) (10 pts) DSN (Linked Lists)

Consider using a linked list to store a string, where each node, in order, stores one letter in the string. The

struct used for a single node is included below. Write a function that takes in two pointers to linked lists

storing 2 strings, and prints out the letters in the string in alternating order, starting with the first letter of

the first string. If one string runs out of letters, just skip over it. For example, if the two strings passed to

the function were “hello” and “computer”, then the function should print “hceolmlpouter”.

typedef struct node {

 char letter;

 struct node* next;

} node;

void printMixed(node* word1, node* word2) {

}

Spring 2023 Section A: Basic Data Structures

Page 4 of 4

3) (5 pts) ALG (Stacks)

Evaluate the following postfix expression, using the algorithm that utilizes an operand stack. Put the value

of the expression in the slot provided and show the state of the operand stack (in this case the stacks should

just have numbers in them) at each of the indicated points in the expression:

 A B C
4 3 + 5 2 - * 8 7 9 + + 6 / 9 4 - * -

 A B C

Note: A indicates the location in the expression AFTER 7 but before 9.

 B indicates the location in the expression AFTER 6 but before the division.

 C indicates the location in the expression AFTER the subtraction but before the multiplication.

Value of the Postfix Expression: ________

Page 1 of 4

Computer Science Foundation Exam

January 14, 2023

Section B

ADVANCED DATA STRUCTURES

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: __

UCFID: __

Question # Max Pts Category Score

1 10 DSN

2 5 ALG

3 10 ALG

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that

particular question have been made.

Spring 2023 Section B: Advanced Data Structures

Page 2 of 4

1) (10 pts) DSN (Binary Trees)

Write a recursive function called prune() that takes the root of a binary tree and deletes all leaf nodes

from the tree. Be sure to update any pointers that need to be updated to account for deleted nodes, carefully

avoid any potential segmentation faults, and avoid memory leaks. (You may assume all the nodes in the

tree have been dynamically allocated.)

For example:

 Initial Tree Resulting Tree

 (leaf nodes underlined and bold) (after pruning)

 18 18

 / \ \

 25 1 1

 / \ \

 2 9 9

 \

 16

This function should return NULL if the root it receives gets deleted. Otherwise, it should return root

itself. Note that if root is NULL, the function should simply return NULL without taking any further

action.

You cannot write any helper functions for this problem. All your work must be contained in a single

function called prune(). The node struct definition and function signature are as follows:

typedef struct node

{

 int data;

 struct node *left;

 struct node *right;

} node;

node *prune(node *root)

{

}

Spring 2023 Section B: Advanced Data Structures

Page 3 of 4

2) (5 pts) ALG (Hash Tables)

Consider the following problem: Suppose we have a rather large text file that contains up to 50 million

strings of 9-digit integers (each separated by a space), and we know that exactly one of those integers

occurs twice. (The rest, we know for certain, occur only once.) Suppose our goal is to find the single 9-

digit integer that occurs twice.

Some clever cheddar of a computer scientist thinks they have come up with a great solution to this

problem. They have a rock-solid implementation of hash tables (written in C) that has been thoroughly

tested by the open-source community and is known to be reliable and bug-free. This implementation of

hash tables has some great features:

• The hash tables have a lovely, effective, widely-used hash function for dealing with integers.

• The hash tables expand automatically without creating any memory leaks.

• In addition to keeping track of the elements in the hash table, this implementation keeps track of a

few extra pieces of information inside the HashTable struct. One of those extra pieces of

information is how many collisions have occurred over the lifetime of this hash table. (That value

is, of course, initialized to zero (0) by the function used to create new hash tables.)

It is this last property that has caught our clever cheddar’s eye. They reason that they can loop through the

input file, throw each integer into a hash table one-by-one, and as soon as a collision occurs in the hash

table, they must have found the duplicate integer they were searching for! So, they write up a piece of

code that effectively does this:

 function find_that_duplicate(file):

 create a hash table, h

 for each integer, n, in file:

 insert n into h

 if h->num_collisions > 0:

 destroy h

 close file

 return n

The idea above is just pseudocode, of course. You may assume that the person implementing this in C is

careful to avoid memory leaks and segmentation faults, that there is enough memory to hold all those

integers in the hash table, that the hash table implementation works well and is rock solid, and that the

code has no syntax errors. You may also assume this function will only be called with a file that actually

exists, and that we know for sure there is exactly one duplicate integer in that file. (So, we do not need to

worry about what happens if there is no duplicate.)

What is wrong with this proposed solution? In your response, be as clear and precise as possible. Long,

rambling word salads will not receive credit.

Spring 2023 Section B: Advanced Data Structures

Page 4 of 4

3) (10 pts) ALG (Tries and AVL Trees)

(a) (5 pts) (Tries) Suppose we insert the following strings into an initially empty trie:

cat cap catapult catalyst phosphorescent pancake pancakes

How many nodes will the resulting trie contain? Please count carefully, as credit for this question

may be all or nothing

(b) (5 pts) Show what the following AVL would look like after inserting the value 42 and performing

any necessary rotations.

 18

 / \

 7 38

 \ \

 12 59

Page 1 of 4

Computer Science Foundation Exam

 January 14, 2023

Section C

ALGORITHM ANALYSIS

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: ___

UCFID: ___

Question # Max Pts Category Score

1 5 ANL

2 10 ANL

3 10 ANL

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib.h, stdio.h, math.h,

string.h) for that particular question have been made.

Spring 2023 Section C: Algorithms Analysis

Page 2 of 4

1) (5 pts) ANL (Algorithm Analysis)

What is the big O runtime for the following segment of code in terms of N and M? (Note: let min(x, y)

denote the minimum of x and y and max(x, y) denote the maximum of x and y. You may use either of

these in your answer. In addition to your answer, please provide justification for your answer.

int fun(int N, int M, int ** grid) {

 int a1 = 0, a2 = 0;

 for (int i = 0; i < N || i < M; i++) {

 if (i < N) a1 += grid[i][0];

 if (i < M) a2 += grid[0][i];

 }

 if (a1 < a2) return a2;

 return a1;

}

Spring 2023 Section C: Algorithms Analysis

Page 3 of 4

2) (10 pts) ANL (Algorithm Analysis)

You are using an algorithm that can multiply 2 N-digit integers in O(N1.5) time. It takes (10/13)3 seconds to

multiply 2 numbers that have 100,000 digits. What is the expected number of digits of 2 numbers we could

multiply together that would take exactly 1 second? Please show all your work, including algebraic

simplification, which is part of what is being tested with this question.

Spring 2023 Section C: Algorithms Analysis

Page 4 of 4

3) (10 pts) ANL (Recurrence Relations)

What is the closed form for the following recurrence relation, T(N)? For full credit your work must be shown.

Note: Your answer should be EXACT and not a Big-Oh bound.

𝑇(𝑁) = 2𝑇(𝑁 − 1) + 𝑁 (for integers N ≥ 1)

𝑇(0) = 0

Page 1 of 4

Computer Science Foundation Exam

 January 14, 2023

Section D

ALGORITHMS

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: ___

UCFID: ___

Question # Max Pts Category Score

1 10 DSN

2 10 DSN

3 5 ALG

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Spring 2023 Section D: Algorithms

Page 2 of 4

1) (10 pts) DSN (Recursive Coding)

Define an extreme permutation of the integers 0 to n – 1 as any permutation where each value in the

permutation (from left to right) is either the smallest or largest value not yet placed. For example, for n =

6, [0, 1, 5, 2, 3, 4] is an extreme permutation but [0, 5, 2, 4, 1, 3] is not. The latter is not because the only

valid values that can be placed where the 2 is are either 1 or 4, the smallest and largest values,

respectively, that have not been placed. Complete the recursive function below so that it prints out all

extreme permutations of length n. A completed wrapper function has been provided. Note: low

represents the lowest unplaced value, high represents the highest unplaced value, and k represents the

number of items in the permutation that have already been filled.

#include <stdio.h>

#include <stdlib.h>

void printExtremeWrapper(int n);

void printExtreme(int* perm, int n, int low, int high, int k);

void printPerm(int* perm, int n);

void printExtremeWrapper(int n) {

 int* perm = malloc(sizeof(int)*n);

 printExtreme(perm, n, 0, n-1, 0);

 free(perm);

}

void printPerm(int* perm, int n) {

 for (int i=0; i<n; i++) printf("%d, ", perm[i]);

 printf("\n");

}

void printExtreme(int* perm, int n, int low, int high, int k) {

 if (low > high) {

 printPerm(perm, n);

 return;

 }

}

Spring 2023 Section D: Algorithms

Page 3 of 4

2) (10 pts) DSN (Sorting)

Complete the following merge function that is used as part of the merge sort process. The function

performs the merge operation from left to mid and mid+1 to right index of the array.

void merge(int arr[], int left, int mid, int right)

{

 int i, j, k;

 int n1 = mid - left + 1; //size of the left array

 int n2 = right - mid; //size of the right array

 /* create temp arrays */

 int *L = (int*) malloc(n1*sizeof(int)); //left array

 int *R = (int*) malloc(n2*sizeof(int)); //right array

 /* Copy data to temp arrays L[] and R[] */

 for (i = 0; i < n1; i++)

 L[i] = arr[left + i];

 for (j = 0; j < n2; j++)

 R[j] = arr[mid + 1 + j];

 /* Merge the temp arrays back into arr[l..r]*/

 i = 0; // Initial index of left subarray

 j = 0; // Initial index of right subarray

 k = left; // Initial index of merged subarray

 // Complete the remaining part of the code that will

 // merge L and R array into arr

}

Spring 2023 Section D: Algorithms

Page 4 of 4

3) (5 pts) ALG (Base Conversion)

Convert 375 in base 10 to binary. Please show your work and put a box around your final answer.

