
Page 1 of 4

Computer Science Foundation Exam

January 12, 2019

Section I A

DATA STRUCTURES

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: ___

UCFID: ___

NID: ___

Question # Max Pts Category Passing Score

1 10 DSN 7

2 10 ALG 7

3 5 ALG 3

TOTAL 25 17

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Spring 2019 Data Structures Exam, Part A

Page 2 of 4

1) (10 pts) DSN (Dynamic Memory Management in C)

This problem relies on the following struct definition:

 typedef struct Employee

 {

 char *first; // Employee's first name.

 char *last; // Employee's last name.

 int ID; // Employee ID.

 } Employee;

Consider the following function, which takes three arrays – each of length n – containing the first

names, last names, and ID numbers of n employees for some company. The function dynamically

allocates an array of n Employee structs, copies the information from the array arguments into the

corresponding array of structs, and returns the dynamically allocated array.

 Employee *makeArray(char **firstNames, char **lastNames, int *IDs, int n)

 {

 int i;

 Employee *array = malloc();

 for (i = 0; i < n; i++)

 {

 array[i].first = malloc();

 array[i].last = malloc();

 strcpy(array[i].first, firstNames[i]);

 strcpy(array[i].last, lastNames[i]);

 array[i].ID = IDs[i];

 }

 return array;

 }

a) Fill in the blanks above with the appropriate arguments for each malloc() statement.

b) Next, write a function that takes a pointer to the array created by the makeArray() function, along

with the number of employee records in that array (n) and frees all the dynamically allocated

memory associated with that array. The function signature is as follows:

 void freeEmployeeArray(Employee *array, int n)

 {

Spring 2019 Data Structures Exam, Part A

Page 3 of 4

2) (10 pts) ALG (Linked Lists)

Consider the following code:

 void doTheThing(node *head, node *current)

 {

 if (current == NULL)

 return;

 else if (current == head->next)

 {

 if (current->data == head->next->next->data)

 doTheThing(head, head->next->next->next);

 else if (current->data == head->next->next->data + 1)

 doTheThing(head, head->next->next->next->next);

 else if (current->data == head->next->next->data + 5)

 doTheThing(head, current->next->next->next);

 else if (current->data == head->next->next->data + 10)

 doTheThing(head, head->next);

 else

 doTheThing(head, current->next);

 }

 else

 doTheThing(head, current->next);

 }

Draw a linked list that simultaneously satisfies both of the following properties:

1. The linked list has exactly four nodes. Be sure to indicate the integer value contained in

each node.

2. If the linked list were passed to the function above, the program would either crash with a

segmentation fault, get stuck in an infinite loop, or crash as a result of a stack overflow

(infinite recursion).

Note: When this function is first called, the head of your linked list will be passed as both arguments to

the function, like so:

 doTheThing(head, head);

Hint: Notice that all the recursive calls always pass head as the first parameter. So, within this function,

head will always refer to the actual head of the linked list. The second parameter is the only one that

ever changes.

Spring 2019 Data Structures Exam, Part A

Page 4 of 4

3) (5 pts) ALG (Stacks and Queues)

Consider the following function:

 void doTheThing(void)

 {

 int i, n = 9; // Note: There are 9 elements in the following array.

 int array[] = {3, 18, 58, 23, 12, 31, 19, 26, 3};

 Stack *s1 = createStack();

 Stack *s2 = createStack();

 Queue *q = createQueue();

 for (i = 0; i < n; i++)

 push(s1, array[i]);

 while (!isEmptyStack(s1))

 {

 while (!isEmptyStack(s1))

 enqueue(q, pop(s1)); // pop element from s1 and enqueue it in q

 while (!isEmptyQueue(q))

 push(s2, dequeue(q)); // dequeue from q and push onto s2

 printf("%d ", pop(s2)); // pop from s2 and print element

 while (!isEmptyStack(s2))

 push(s1, pop(s2)); // pop from s2 and push onto s1

 }

 printf("Tada!\n");

 freeStack(s1);

 freeStack(s2);

 freeQueue(q);

 }

What will be the exact output of the function above? (You may assume the existence of all functions

written in the code, such as createStack(), createQueue(), push(), pop(), and so on.)

Page 1 of 4

Computer Science Foundation Exam

January 12, 2019

Section I B

DATA STRUCTURES

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: ___

UCFID: ___

NID: ___

Question # Max Pts Category Passing Score

1 5 DSN 3

2 10 ALG 7

3 10 ALG 7

TOTAL 25 17

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Spring 2019 Data Structures Exam, Part B

Page 2 of 4

1) (5 pts) DSN (Binary Trees)

Write a recursive function to print a postorder traversal of all the integers in a binary tree. The node

struct and function signature are as follows:

 typedef struct node

 {

 struct node *left;

 struct node *right;

 int data;

 } node;

 void print_postorder(node *root)

 {

Spring 2019 Data Structures Exam, Part B

Page 3 of 4

2) (10 pts) ALG (Minheaps)

a) Show the result of inserting the value 24 into the following minheap.

 33

 / \

 41 89

 / \ /

 77 50 92

b) Show the result of deleting the root of the following minheap.

 33

 / \

 41 89

 / \ /

 77 50 92

c) Using big-oh notation, what is the worst-case runtime for deleting the minimum element from a

minheap that has n nodes?

Spring 2019 Data Structures Exam, Part B

Page 4 of 4

3) (10 pts) ALG (AVL Trees)

a) Show the result of inserting 37 into the following AVL tree:

 84

 / \

 25 106

 / \ \

 12 39 212

 /

 30

b) Using big-oh notation, give the best-case runtime for inserting a new element into an AVL tree with

n nodes:

c) Using big-oh notation, give the worst-case runtime for inserting a new element into an AVL tree

with n nodes:

d) Using big-oh notation, give the best-case runtime for inserting a new element into a binary search

tree with n nodes:

e) Using big-oh notation, give the worst-case runtime for inserting a new element into a binary search

tree with n nodes:

Page 1 of 4

Computer Science Foundation Exam

 January 12, 2019

Section II A

ALGORITHMS AND ANALYSIS TOOLS

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: ___

UCFID: ___

NID: ___

Question # Max Pts Category Passing Score

1 10 ANL 7

2 5 ANL 3

3 10 ANL 7

TOTAL 25 17

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Spring 2019 Algorithms and Analysis Tools Exam, Part A

Page 2 of 4

1) (10 pts) ANL (Algorithm Analysis)

With proof, determine the Big-Oh run time of the function, f, below, in terms of the input parameter n.

(Note: You may use results from algorithms studied previously in COP 3502 without restating the full

proof of run time.)

#include <math.h>

int f(int array[], int n) {

 return frec(array, 0, n-1);

}

int frec(int array[], int lo, int hi) {

 if (lo == hi) return array[lo];

 int left = frec(array, lo, (lo+hi)/2);

 int right = frec(array, (lo+hi)/2+1, hi);

 int i, lCnt = 0, rCnt = 0;

 for (i=lo; i<=hi; i++) {

 if (abs(array[i]-left) < abs(array[i]-right))

 lCnt++;

 else

 rCnt++;

 }

 if (lCnt > rCnt) return lCnt;

 return rCnt;

}

Spring 2019 Algorithms and Analysis Tools Exam, Part A

Page 3 of 4

2) (5 pts) ANL (Algorithm Analysis)

An algorithm processing a two dimensional array with R rows and C columns runs in 𝑂(𝑅𝐶2) time. For

an array with 100 rows and 200 columns, the algorithm processes the array in 120 ms. How long would

it be expected for the algorithm to take when processing an array with 200 rows and 500 columns?

Please express your answer in seconds.

Spring 2019 Algorithms and Analysis Tools Exam, Part A

Page 4 of 4

3) (10 pts) ANL (Summations and Recurrence Relations)

Determine the following summation in terms of n (assume n is a positive integer 2 or greater),

expressing your answer in the form an3 + bn2 + cn, where a, b and c are rational numbers. (Hint: Try

rewriting the summation into an equivalent form that generates less algebra when solving.)

∑ (𝑖 + 4)

𝑛2+𝑛−4

𝑖=𝑛2−3

Page 1 of 4

Computer Science Foundation Exam

 January 12, 2019

Section II B

ALGORITHMS AND ANALYSIS TOOLS

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: ___

UCFID: ___

NID: ___

Question # Max Pts Category Passing Score

1 5 DSN 3

2 10 ALG 7

3 10 DSN 7

TOTAL 25 17

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat.

Spring 2019 Algorithms and Analysis Tools Exam, Part B

Page 2 of 4

1) (5 pts) DSN (Recursive Coding)

Mathematically, given a function f, we recursively define fk(n) as follows: if k = 1, f1(n) = f(n).

Otherwise, for k > 1, fk(n) = f(fk-1(n)). Assume that a function, f, which takes in a single integer and

returns an integer already exists. Write a recursive function fcomp, which takes in both n and k (k > 0),

and returns fk(n).

int f(int n);

int fcomp(int n, int k) {

}

Spring 2019 Algorithms and Analysis Tools Exam, Part B

Page 3 of 4

2) (10 pts) ALG (Sorting)

(a) (5 pts) Consider using Merge Sort to sort the array shown below. What would the state of the

array be right before the last call to the Merge function occurs?

index 0 1 2 3 4 5 6 7 8 9

value 20 15 98 45 13 83 66 51 88 32

Answer:

index 0 1 2 3 4 5 6 7 8 9

value

(b) (5 pts) An inversion in an array, arr, is a distinct pair of values i and j, such that i < j and arr[i] >

arr[j]. The function below is attempting to count the number of inversions in its input array, arr,

of size n. Unfortunately, there is a bug in the program. Given that the array passed to the function

has all distinct values, what will the function always return (no matter the order of values in the

input array), in terms of n? Also, suggest a quick fix so that the function runs properly. (Note:

analyzing inversions is important to studying sorting algorithm run times.)

int countInversions(int arr[], int n) { // line 1

 int i, j, res = 0; // line 2

 for (i = 0; i < n; i++) { // line 3

 for (j = 0; j < n; j++) { // line 4

 if (arr[i] > arr[j]) // line 5

 res++; // line 6

 } // line 7

 } // line 8

 return res; // line 9

} // line 10

Return value of the function in terms of n: _______________________

Line number to change to fix the function: _____________

Line of code to replace that line: ___

Spring 2019 Algorithms and Analysis Tools Exam, Part B

Page 4 of 4

3) (10 pts) DSN (Bitwise Operators)

In this problem we will consider buying a collection of 20 figurines, labeled 0 through 19, inclusive. The

figurines come in packages. Each package has some non-empty subset of figurines. We can represent

the contents of a single package using an integer in between 1 and 220 – 1, inclusive, where the bits that

are on represent which figurines are in the package. For example, the integer 22 = 24 + 22 + 21, would

represent a package with figurines 1, 2 and 4. Each month, one package comes out. You greedily buy

every package until you have all 20 figurines. Write a function that takes in an array of integers,

packages, and its length, n, where packages[i] stores an integer representing the contents of the package

on sale during month i, and returns the number of months you will have to buy packages to complete the

set. It is guaranteed that each figurine belongs to at least one of the packages and that each value in the

array packages is in between 1 and 220-1, inclusive. For full credit, you must use bitwise operators.

int monthsTillComplete(int packages[], int n) {

}

