
Page 1 of 4

Computer Science Foundation Exam

 January 14, 2017

Section I A

DATA STRUCTURES

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: ___

UCFID: ___

NID:

Question # Max Pts Category Passing Score

1 10 DSN 7

2 5 ALG 3

3 10 DSN 7

TOTAL 25 17

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Spring 2017 Data Structures Exam, Part A

Page 2 of 4

1) (10 pts) DSN (Dynamic Memory Management in C)

A catalogue of apps and their price is stored in a text file. Each line of the file contains the name of an

app (1-19 letters) followed by its price with a space in between. Write a function called

makeAppArray that reads the app information from the file and stores it in an array of app pointers.

Your function should take 2 parameters: a pointer to the file containing the app information and an

integer indicating the number of apps in the file. It should return a pointer to the array of apps. An app

is stored in a struct as follows:

typedef struct{

 char name[20];

 float price;

} app;

Make sure to allocate memory dynamically. The function signature is:

app** makeAppArray(FILE* fp, int numApps) {

}

Spring 2017 Data Structures Exam, Part A

Page 3 of 4

2) (5 pts) ALG (Linked Lists)

Consider the following function that takes in as a parameter a pointer to the front of a linked list(list)

and the number of items in the list(size). node is defined as follows:

typedef struct node {

 int data;

 struct node* next;

} node;

int mystery(node* list, int size) {

 node* prev = list;

 node* temp = list->next;

 while (temp != NULL) {

 if (list->data == temp->data) {

 prev->next = temp->next;

 free(temp);

 size--;

 temp = prev->next;

 }

 else {

 prev = prev->next;

 temp = temp->next;

 }

 }

 return size;

}

If mystery(head, 7), is called, where head is shown below, what will the function return and

draw a picture of the resulting list, right after the call completes?

 +----+ +----+ +----+ +----+ +----+ +----+ +----+

 | 26 |-->| 39 |-->| 26 |-->| 20 |-->| 26 |-->| 32 |-->| 39 |-->NULL

 +----+ +----+ +----+ +----+ +----+ +----+ +----+

 ^ head

Adjusted List

Return Value = _____

Spring 2017 Data Structures Exam, Part A

Page 4 of 4

3) (10 pts) DSN (Queues)

A queue is implemented as an array. The queue has the 2 attributes, front and size. front is the index in the array

where the next element to be removed from the queue can be found, if the queue is non-empty. (If the queue is

empty, front may be any valid array index from 0 to 19.) size is the total number of elements currently in the

queue. For efficient use of resources, elements can be added to the queue not just at the end of the array but also

in the indices at the beginning of the array before front. Such a queue is called a circular queue. A circular queue

has the following structure:

typedef struct {

 int values[20];

 int front, size;

} cQueue;

Write an enqueue function for this queue. If the queue is already full, return 0 and take no other action.

If the queue isn't full, enqueue the integer item into the queue, make the necessary adjustments, and

return 1. Since the array size is hard-coded to be 20 in the struct above, you may use this value in your

code and assume that is the size of the array values inside the struct.

int enqueue(cQueue* thisQ, int item) {

}

Page 1 of 4

Computer Science Foundation Exam

 January 14, 2017

Section I B

DATA STRUCTURES

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: ___

UCFID: ___

NID:

Question # Max Pts Category Passing Score

1 10 DSN 7

2 5 ALG 3

3 10 ALG 7

TOTAL 25 17

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that

particular question have been made.

Spring 2017 Data Structures Exam, Part B

Page 2 of 4

1) (10 pts) DSN (Binary Trees)

Michael took CS 1 last semester. During the Winter break he thought that it would be cool to keep track

of all of the new words that he learned while reading a novel. He has stored all of his words (all 1-19

lowercase letters only) in alphabetic order in a binary search tree (BST). The nodes of his BST are stored

in the following structure:

typedef struct {

 struct node *left, *right;

 char word[20];

} bsNode;

Michael wants to count the number of words in his binary search tree that come before a specified word

in alphabetical order. Write a recursive function countBefore which takes in a pointer to the root of

a binary search tree storing the words and a string target (of 1-19 lowercase letters only) and returns

the number of words in the tree that come before target, alphabetically.

int countBefore(bsNode* root, char target[]){

}

Spring 2017 Data Structures Exam, Part B

Page 3 of 4

2) (5 pts) ALG (Hash Maps)

(a) (3 pts) A set of students’ names are stored in a hash table implemented as an array of size 25. Their

grades out of 100 are used as input to the hashing function. Suggest one hash function that can be used to

store the names. Would your function cause clashes? Explain your answer.

(b) (2 pts) If the following students have the grades shown, and your hash function given in (a) is used,

draw the state of the hash map after these 3 entries are inserted into the table. (Note: No need to show all

25 array slots, just clearly label the index and contents of each of the non-empty array slots.)

Mary 60

Ben 75

Dona 13

Spring 2017 Data Structures Exam, Part B

Page 4 of 4

3) (10 pts) ALG (AVL Trees)

(a) (8 pts) Create an AVL tree by inserting the following values in the order given: 38, 72, 58, 16, 3, 24,

8, and 15. Show the state of the tree after each insertion.

(b) (2 pts) Draw the state of the tree after the deletion of the node containing the value 16.

Page 1 of 4

Computer Science Foundation Exam

 January 14, 2017

Section II A

ALGORITHMS AND ANALYSIS TOOLS

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: ___

UCFID: ___

NID:

Question # Max Pts Category Passing Score

1 5 ANL 3

2 10 ANL 7

3 10 ANL 7

TOTAL 25 17

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Spring 2017 Algorithms and Analysis Tools Exam, Part A

Page 2 of 4

1) (5 pts) ANL (Algorithm Analysis)

Consider the following function with integer inputs n and m:

void solveit(int* array, int n, int m) {

 int i, res = 0;

 for (i=0; i<n; i++) {

 int low = 0, high = m;

 while (low < high) {

 int mid = (low+high)/2;

 if (f(mid) < array[i])

 low = mid+1;

 else

 high = mid;

 }

 printf("%d\n", low);

 }

}

You may assume that the function f that is called from solveit defines a monotonically increasing

function that runs in O(1) time. With proof, determine the run-time of this function in terms of n and m.

Spring 2017 Algorithms and Analysis Tools Exam, Part A

Page 3 of 4

2) (10 pts) ANL (Algorithm Analysis)

(a) (5 pts) An algorithm to process an array of size n takes O(n2) time. If the algorithm takes 113 ms to

process an array of size 10,000 how long will it take to process an array of size 100,000, in seconds?

(b) (5 pts) A search algorithm on an array of size n runs in O(lg n) time. If 200,000 searches on an array

of size 218 takes 20 ms, how long will 540,000 searches take on an array of size 220 take, in

milliseconds?

Spring 2017 Algorithms and Analysis Tools Exam, Part A

Page 4 of 4

3) (10 pts) ANL (Summations and Recurrence Relations)

Find the Big-Oh solution to the following recurrence relation using the iteration technique. Please show

all of your work, including 3 iterations, followed by guessing the general form of an iteration and

completing the solution. Full credit will only be given if all of the work is accurate (and not just for

arriving at the correct answer.)

 𝑇(𝑛) = 4𝑇 (
𝑛

2
) + 𝑛, 𝑇(1) = 1

Page 1 of 4

Computer Science Foundation Exam

 January 14, 2017

Section II B

ALGORITHMS AND ANALYSIS TOOLS

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: ___

UCFID: ___

NID:

Question # Max Pts Category Passing Score

1 10 DSN 7

2 5 ALG 3

3 10 DSN 7

TOTAL 25 17

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat.

Fall 2016 Algorithms and Analysis Tools Exam, Part B

Page 2 of 4

1) (10 pts) DSN (Recursive Coding)

Write a recursive function that returns 1 if an array of size n is in sorted order from smallest to largest

with all values less than or equal to max, and 0 otherwise. Note: If array a stores 3, 6, 7, 7, 12, then

isSorted(a, 12, 5) should return 1 but isSorted(a, 11, 5) should return 0. If array b

stores 3, 4, 9, 8, then isSorted(b, 20, 4) should return 0, since 9 is bigger than 8 but appears

before it.

int isSorted(int* array, int max, int n) {

}

Fall 2016 Algorithms and Analysis Tools Exam, Part B

Page 3 of 4

2) (5 pts) ALG (Sorting)

Consider running a Merge Sort on the array shown below. Show the state of the array right before the

last Merge is performed. (Note: due to the nature of this question, relatively little partial credit will be

awarded for incorrect answers.)

index 0 1 2 3 4 5 6 7

value 13 8 9 2 1 17 6 5

Your answer:

index 0 1 2 3 4 5 6 7

value

Fall 2016 Algorithms and Analysis Tools Exam, Part B

Page 4 of 4

3) (10 pts) DSN (Backtracking)

A D-digit divisible number is a positive integer of D digits (with no leading digits zero) such that each

of its prefixes of k digits is a number divisible by k. For example, 52240 is a 5-digit divisble number

because 5 is divisible by 1, 52 is divisible by 2, 522 is divisible by 3, 5224 is divisible by 4 and 52240 is

divisible by 5. Assume that there exists a function as specified below:

int kDigitPrefixValue(char* number, int k);

such that if number is storing the string version of an integer that is at least k digits long, then the

function will return the integer value of the first k digits represented in number. For example,

kDigitPrefixValue("52240", 4) will return the integer 5224.

Complete the recursive function below so that it will print out all 6-digit divisible numbers. (A complete

wrapper function is provided for you, so just fill out the blanks in the recursive function.)

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int kDigitPrefixValue(char* number, int k);

void printkDivisibleRec(char* number, int k);

void wrapper(int numdigits);

int main() {

 wrapper(6);

 return 0;

}

void wrapper(int numdigits) {

 char* tmp = malloc(sizeof(char)*(numdigits+1));

 int i;

 for (i=0; i<numdigits; i++) tmp[i] = '0';

 tmp[numdigits] = '\0';

 printkDivisibleRec(tmp, 0);

 free(tmp);

}

void printkDivisibleRec(char* number, int k) {

 if (k == strlen(number)) {

 printf("%s\n", number);

 return;

 }

 int i = k == 0 ? 1 : 0;

 for (; i < ____ ; i++) {

 number[___] = (char)(____ +'0');

 int prefix = ___________________________(number, _______);

 if (__________ %(________) == ____)

 _____________________________(number, ________);

 }

}

