
Page 1 of 6

Computer Science Foundation Exam

May 6, 2016

Section I A

COMPUTER SCIENCE

NO books, notes, or calculators may be used,

and you must work entirely on your own.

SOLUTION

Question # Max Pts Category Passing Score

1 10 DSN 7

2 10 ANL 7

3 10 ALG 7

4 10 ALG 7

5 10 ALG 7

TOTAL 50 35

You must do all 5 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and

not graded based on the answer alone. Credit cannot be given unless all work

is shown and is readable. Be complete, yet concise, and above all be neat.

Spring 2016 Computer Science Exam, Part A

Page 2 of 6

1) (10 pts) DSN (Recursive Functions)

Complete the function below, to create a recursive function productDigits that takes in 1

parameter, a non-negative integer, n, and returns the product of n's digits. For example

productDigits(232) will return 12 (2 x 3 x 2), and productDigits(13999019) will return 0.

int productDigits(int number){

 if(number < 10)

 return number;

 return (number%10) * productDigits(number/10);

}

Grading:

3 pts for base case

7 pts for recursive call - 1 pt return, 2 pts for getting last digit, 1 pt mult, 1 pt rec call

 2 pts number/10

Spring 2016 Computer Science Exam, Part A

Page 3 of 6

2) (10 pts) ANL (Summations)

a) (5 pts) Determine the value of the following summation, in terms of n: ∑ (4𝑖 + 7)2𝑛
𝑖=1 . Express

your final answer as a polynomial in the form an2 + bn, where a and b are integers.

∑(4𝑖 + 7)

2𝑛

𝑖=1

= (4∑𝑖

2𝑛

𝑖=1

) +∑7

2𝑛

𝑖=1

= 4 ×
2𝑛(2𝑛 + 1)

2
+ 7(2𝑛)

= 2(2𝑛)(2𝑛 + 1) + 14𝑛

= 8𝑛2 + 4𝑛 + 14𝑛

= 8𝑛2 + 18𝑛

Grading: 1 pt for split, 2 pts for sum to i formula, 1 pt sum constant, 1 pt simplify

b) (5 pts) Determine the value of the summation below:

 ∑ (3𝑖 + 1)100
𝑖=21 = ∑ (3𝑖 + 1100

𝑖=1) − ∑ (3𝑖 + 1)20
𝑖=1

 = ∑ (3𝑖) + ∑ 1100
𝑖=1

100
𝑖=1 − (∑ (3𝑖) + ∑ 120

𝑖=1)20
𝑖=1

 = 3 ×
100×101

2
+ 100 − (3 ×

20×21

2
+ 20)

 = 3 × 50 × 101 + 100 − 3 × 10 × 21 − 20

 = 3 × 5050 + 100 − 30 × 21 − 20

 = 15150 + 100 − 630 − 20

 = 14600

Grading (5 pts total): 1 pt for splitting sum, 3 pts for properly plugging into formulas for

both sums, 1 pt for simplification

Spring 2016 Computer Science Exam, Part A

Page 4 of 6

3) (10 pts) ALG (Stacks)

A stack of positive integers is implemented using the struct shown below. Using this

implementation of the stack write the push and peek functions. Assume that when a struct stack

is empty, its top variable is equal to -1.

#define MAX 12

struct stack{

 int top; /* indicates index of top */

 int nodes[MAX] ;

};

// Attempts to push value onto the stack pointed to by s.

// If the stack is full 0 is returned and no action is taken.

// Otherwise, value is pushed onto the stack and 1 is returned.

int push(struct stack* s, int value){

 if(s->top >= MAX-1)

 return 0;

 s->nodes[s->top + 1] = value;

 s->top++;

 return 1;

}

Grading: 2 pts for full case, 2 pts for insertion, 1 pt update top, 1 pt return

// Returns the value at the top of the stack. If the stack is

// empty, -1 is returned.

int peek(struct stack* s){

 if(s-> top == -1)

 return -1;

 return s->nodes[s->top];

}

Grading: 2pt for empty case, 2 pts for return in regular case.

Spring 2016 Computer Science Exam, Part A

Page 5 of 6

4) (10 pts) ALG (Binary Search Trees and Hash Tables)

a) (5 pts) Show the AVL tree created when 19 is added to the AVL tree below

Grading: 5 pts total - GIVE FULL CREDIT IF FINAL TREE IS CORRECT

 1 for inserting 19 in the correct position

 2 pt for left rotation

 2 pt for right rotation (for rotation trace)

b) (5 pts) In a binary heap of 100 elements, how many elements are at a depth of 6 (lowest level)

from the root of the heap? (Note: the depth of an element is the number of links that have to be

traversed from the root of the tree to reach it.)

A binary heap fills in each row before moving onto the next, since its structure is always a

complete binary tree. Thus, the number of nodes at depths 0 through 5 are 1, 2, 4, 8, 16, and 32,

respectively. This sums to 63. Thus, the next 37 nodes will all be at a depth of 6 from the root.

37

Grading: 2 pts for observation of heap structure, 2 pts for counting up the nodes at all the

previous levels, 1 pt for calculating the final answer.

Spring 2016 Computer Science Exam, Part A

Page 6 of 6

5) (10 pts) ALG (Base Conversion)

a) Convert the hexadecimal number AF2E9 to binary without first converting to the base 10

equivalent

 A F 2 E 9

 10 15 2 14 9 1010 1111 0010 1110 1001

1010 1111 0010 1110 1001

Grading: 5 pts total - 1 pt for each group of 4 bits. All 4 bits in the group have to be

correct to get the point.

b) Frank is the team-lead for the software testing team at his job. He is celebrating his

birthday. Some of his co-workers have baked a cake for the celebration and thought that

it would be really cool to put candles on his cake to represent his age in binary. An unlit

candle represents the 0 bit. From the pic of the cake below, how old is Max?

 100111

 32 4 2 1

= 32 + 4 + 2 + 1 = 39

 Grading: 5 pts total

 4 pts : 1 for decimal for each digit

 1 pt for final answer

 Note: Also give full credit for 32 + 16 + 8 + 1 = 57, though most students will

 read left to right.

Page 1 of 6

Computer Science Foundation Exam

 May 6, 2016

Section I B

COMPUTER SCIENCE

NO books, notes, or calculators may be used,

and you must work entirely on your own.

SOLUTION

Question # Max Pts Category Passing Score

1 10 ANL 7

2 10 ANL 7

3 10 DSN 7

4 10 DSN 7

5 10 ALG 7

TOTAL 50 35

You must do all 5 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat.

Spring 2016 Computer Science Exam, Part B

Page 2 of 6

1) (10pts) ANL (Algorithm Analysis)

Determine the best case run time in terms n for each of the following functions/operations.

a) Finding the maximum value in an unsorted linked list of n elements O(n)

b) Inserting an item into a binary search tree of n elements O(1)

c) Inserting an item into a binary heap of n elements O(1)

d) Sorting an array of n elements using Merge Sort O(nlgn)

e) Deleting an element from a circular linked list of n elements O(1)

Grading: 1 pt each, must be correct to earn the point.

Determine the worst case run time in terms of n for each of the following functions/operations.

f) Deleting an item from an AVL tree of n elements O(lg n)

g) Deleting the minimum item from a binary min heap of n elements O(lg n)

h) Inserting an item into a binary search tree of n elements O(n)

i) Sorting an array of n elements using Heap Sort O(nlgn)

j) Deleting an element from a doubly linked list of n elements O(n)

Grading: 1 pt each, must be correct to earn the point.

Spring 2016 Computer Science Exam, Part B

Page 3 of 6

2) (10 pts) ANL (Algorithm Analysis)

a) (5 pts) Given that a function has time complexity O(n2), if the function takes 338 ms for an input of

size 13000, how long will the same function take for an input of size 8000?

 𝑇(𝑛) = 𝑐𝑛2

 𝑇(13000) = 𝑐130002 = 338𝑚𝑠

 𝑐 =
338

132
×

1

106
𝑚𝑠 =

338

169
× 10−6𝑚𝑠 = 2 × 10−6𝑚𝑠

 𝑇(8000) = 𝑐(8000)2 = (2 × 10−6𝑚𝑠) × 82 × 106 = 128𝑚𝑠

128 ms

Grading: 2 pts for computing the constant c, 2 pts substituting 8 into general equation to find

time for input size of 8000, 1 pt for simplifying the final answer.

b) (5 pts) What is the run-time of the segment of code below, in terms of the variables n and k? Please

provide a Big-Oh bound and briefly justify your answer. (Assume k has already been defined as set to a

value prior to the code segment shown.)

int i, total = 0;

for (i=0; i<n; i+=2) {

 int start = k;

 while (start > 0) {

 total += ((k|i) & start);

 start /= 2;

 }

}

The outer loop runs n/2 times. The inner loop will always run O(lg k) times, since k never changes

during the code segment and each iteration of the while loop divides start by 2. Since the two loops are

independent of each other in terms of number of times they run, it follows that the run time of the code

segment is O(nlg k).

O(nlg k)

Grading: 2 pts outer loop analysis, 2 pts inner loop analysis, 1 pt final answer

Spring 2016 Computer Science Exam, Part B

Page 4 of 6

3) (10 pts) DSN (Linked Lists)

Write a function, mode, that takes in a pointer to the front of a linked list storing integers, and returns

the mode of the list of integers. Recall that the mode of a list of values is the value that occurs most

frequently. You may assume that all of the integers in the list are in between 0 and 999, inclusive. If

there is more than one mode, your function must return the smallest of all of the modes. (For example, if

the list contains the values 2, 4, 3, 2, 2, 4, 1, and 4, your function must return 2 and should NOT return

4, since both 2 and 4 occur three times in the list but 2 is smaller than 4.) Hint: declare an auxiliary array

inside of the mode function. You may assume that the list pointed to by front is non-empty.

Use the struct definition provided below.

#include <stdlib.h>

#include <stdio.h>

#define MAX 1000

typedef struct node {

 int value;

 struct node* next;

} node;

int mode(node* front) {

 int freq[MAX], i;

 for (i=0; i<MAX; i++)

 freq[i] = 0;

 while (front != NULL) {

 freq[front->value]++;

 front = front->next;

 }

 int res = 0;

 for (i=1; i<MAX; i++)

 if (freq[i] > freq[res])

 res = i;

 return res;

}

Grading: 3 pts initializing frequency array, 4 pts filling frequency array, 3 pts finding index of

maximum value of frequency array. Only take off 1 pt if ties are broken incorrectly.

Note: Please readjust points for solution ideas different than this as necessary.

Page 1 of 5

Computer Science Foundation Exam

May 6, 2016

Section II B

DISCRETE STRUCTURES

NO books, notes, or calculators may be used,

and you must work entirely on your own.

SOLUTION

Question Max Pts Category Passing Score

1 15 CTG (Counting) 10

2 10 PRB (Probability) 7

3 15 PRF (Functions) 10

4 10 PRF (Relations) 7

ALL 50 34

You must do all 4 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and

not graded based on the answer alone. Credit cannot be given unless all work

is shown and is readable. Be complete, yet concise, and above all be neat.

Spring 2016 Discrete Structures Exam, Part B

Page 2 of 5

1) (15 pts) CTG (Counting)

Please leave your answers in factorials, permutations, combinations and powers. Do not

calculate out the actual numerical value for any of the questions. Justify your answers.

(a) (5 pts) If seven people are to be seated in a single row with ten chairs, how many unique

arrangements are possible? (For example, if the people are labeled P1 through P7 and we use B

to denote an empty chair, then one possible arrangement is P1, B, B, P2, P4, P3, P7, P5, B, P6.

Notice that the people are distinguishable but the empty chairs aren't.)

One process for counting the possibilities (where our guests are “A” through “G”) is:

- Seat Guest A – 10 choices Seat Guest E – 6 choices

- Seat Guest B – 9 choices Seat Guest F – 5 choices

- Seat Guest C – 8 choices Seat Guest G – 4 choices

- Seat Guest D – 7 choices

Naturally, all the remaining seats are left empty. By the rule of product, the number of unique

arrangements is
10!

3!
. (Grading - 2 pt product, 3 pts terms)

(b) (10 pts) How many of the arrangements from part (a) guarantee that none of the empty

chairs are adjacent to one another?

Let x1 equal the number of chairs left of the first empty chair, x2 equal the number of chairs in

between the first two empty chairs, x3 be the number of empty chairs in between the last two

empty chairs and x4 equal the number of chairs to the right of the last empty chair. The number

of non-negative integer solutions to the equation below is the number of ways to choose the

empty chairs:

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 7

such that 𝑥2 > 0 and 𝑥3 > 0. We can deal with these restrictions by simply setting up new

non-negative integer variables 𝑥2 = 𝑥2
′ + 1 and 𝑥3 = 𝑥3

′ + 1, where 𝑥2
′ ≥ 0 and 𝑥3

′ ≥ 0. Thus,

now we want to find the number of non-negative integer solutions to:

𝑥1 + 𝑥2
′ + 1 + 𝑥3

′ + 1 + 𝑥4 = 7

𝑥1 + 𝑥2
′ + 𝑥3

′ + 𝑥4 = 5

Using the combinations with repetition formula, we find that the number of non-negative

solutions to the equation above is (
5 + 4 − 1

4 − 1
) = (

8
3

).

Finally, the 7 people can be placed in the 7 non-empty chairs in 7! ways, so the final answer is

(
8
3

)7!.

Grading: 7 pts for # of ways to choose empty chairs (many ways to do this, give partial as

you see fit), 2 pts for seating the people, 1 pt for multiplying the two.

Spring 2016 Discrete Structures Exam, Part B

Page 3 of 5

2) (10 pts) PRB (Probability)

A mad scientist has created a probability-driven lock that can be permanently affixed to all

manner of things (gym bags, lockers, vehicles, door locks, and so on). The lock has a five-digit

LED display and a single button, and works as follows:

Once the lock is closed, if you want to open it, you press the button, and it generates a random

sequence of five digits on its display. (Each digit is a random integer on the range zero through

nine.) If the product of all five digits is odd, the lock opens. Otherwise, you have to press the

button again to generate another random sequence of digits.

If you press the button three times without getting the lock to open, it seals itself shut forever.

If you put one of these locks on something, what is the probability that you’ll actually be able

to get it to open again?

The key insight here is that if any one of the five digits is even, then you have a factor of two in your overall

product, and therefore the product is even. In order for the product to be odd, all five digits must be odd.

Since each of the five digits can either be even or odd (each with equal probability), we can consider the size of

the sample space for a single press of the lock’s button to be 25 = 32. There is only one way for the product to be

odd (that is, for all the digits to be even), so the probability of an odd product is
1

32
 = 0.03125. This means the

probability of an even product is
31

32
.

Another way to conceive of the sample space is to look at all possible five-digit numbers that could pop up. There

are 105 = 100,000 such numbers. The number of outcomes where all five digits are odd is 55 = 3,125, since

there are five odd digits in the range zero through nine. So, the probability of an odd product is
3,125

100,000
= 0.03125.

The probability of getting three even products in a row is (
31

32
)

3

. That also corresponds to the probability that the

lock will be sealed shut forever. So, the probability that you’ll actually succeed in opening the lock is 1 −

 (
31

32
)

3

≈ 9.085%.

Alternate Solution: Another way to arrive at that probability is to realize that you could open the lock on the

first, second, or third try. These mutually disjoint events give rise to the following sum of probabilities:

(
1

32
) + (

31

32
) (

1

32
) + (

31

32
) (

31

32
) (

1

32
) ≈ 9.085%

Grading:

3 pts for realizing that the product is odd only if all five digits are odd.

3 pts for the cardinality of the sample space.

4 pts for their approach to the final answer (event complement or sum of probabilities)

Please award partial credit for each piece as appropriate.

Spring 2016 Discrete Structures Exam, Part B

Page 4 of 5

3) (15 pts) PRF (Functions)

(a) (4 pts) Define finite sets 𝐴 and 𝐵 that satisfy all three of the following criteria

simultaneously:

1. 𝐴 and 𝐵 are non-empty.

2. There exists a surjective function from 𝐴 to 𝐵.

3. Every possible surjective function from 𝐴 to 𝐵 is also injective.

For this question, any sets 𝐴 and 𝐵 that are both non-empty (2 pts) and have the same

cardinality (2 pts) will work.

(b) (4 pts) Define finite sets 𝐴 and 𝐵 that satisfy all three of the following criteria

simultaneously:

1. 𝐴 and 𝐵 are non-empty.

2. There exists an injective function from 𝐴 to 𝐵.

3. It is impossible to define an injective function from 𝐴 to 𝐵 that is also surjective.

For this question, any sets 𝐴 and 𝐵 that are both non-empty (2 pts) and where |𝐴| < |𝐵|
(2 pts) will work.

(c) (4 pts) Define finite sets 𝐴 and 𝐵 that satisfy all three of the following criteria

simultaneously:

1. 𝐴 and 𝐵 are non-empty.

2. There exists an injective function from 𝐴 to 𝐵.

3. It is possible to define an injective function from 𝐴 to 𝐵 that is also surjective.

For this question, any sets 𝐴 and 𝐵 that are both non-empty (2 pts) and where |𝐴| = |𝐵|
(2 pts) will work.

(d) (3 pts) Define finite sets 𝐴 and 𝐵 that satisfy both of the following criteria simultaneously:

1. 𝐴 and 𝐵 are non-empty.

2. It is impossible to define a function from 𝐴 to 𝐵 that is not injective.

For this question, 𝐴 must contain a single element (2 pts), and 𝐵 must be non-empty (1 pt).

Spring 2016 Discrete Structures Exam, Part B

Page 5 of 5

4) (10 pts) PRF (Relations)

(a) (3 pts) What three properties must a relation satisfy in order to be a partial ordering

relation?

It must be reflexive, transitive, and antisymmetric.

Grading:

-1 pt for each incorrect property listed

-1 pt for each correct property missing from the list

(b) (7 pts) Consider the relation ℛ on ℤ+ defined as follows: For all positive integers 𝑥 and 𝑦,
(𝑥, 𝑦) ∈ ℛ if 𝑦 is divisible by 𝑥. Prove or disprove that ℛ is a partial ordering relation.

𝓡 is reflexive:
𝑥 | 𝑥 for all positive integers 𝑥, so (𝑥, 𝑥) ∈ ℛ. Therefore, ℛ is reflexive.

𝓡 is transitive:

If (𝑥, 𝑦) ∈ ℛ and (𝑦, 𝑧) ∈ ℛ, then we know 𝑥 | 𝑦 and 𝑦 | 𝑧. It follows that 𝑦 = 𝑥𝑚 for some

integer 𝑚, and 𝑧 = 𝑦𝑛 for some integer 𝑛. Thus, 𝑧 = (𝑥𝑚)𝑛 = 𝑥(𝑚𝑛), and since 𝑚𝑛 is an

integer, we have that 𝑥 | 𝑧. Therefore, (𝑥, 𝑧) ∈ ℛ.

𝓡 is antisymmetric:

If (𝑥, 𝑦) ∈ ℛ and (𝑦, 𝑥) ∈ ℛ, we know 𝑥 | 𝑦 and 𝑦 | 𝑥. Due to the former, there exists a

positive integer c such that y = cx. Due to the latter, there exists a positive integer integer d

such that x = dy. Substituting the second equation into the first, we find that y = cx = c(dy), so

y = cdy. Since y must be non-zero, we get cd = 1. Since c and d are positive, it follows that

both must be 1 and x and y are equal. Therefore, ℛ is antisymmetric.

.

Grading:

1 pts for reflexive

3 pts for transitive

3 pts for antisymmetric

If they try to prove (or disprove) the wrong properties, try to award at least half credit for the

properties they worked with.

