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Computer Science Foundation Exam 

 
May 6, 2016 

 

Section II A 

DISCRETE STRUCTURES 

NO books, notes, or calculators may be used,  

and you must work entirely on your own. 
 

SOLUTION 

Question Max Pts Category Passing Score 

1 15 PRF (Induction) 10  

2 10 PRF (Logic) 7  

3 15 PRF (Sets) 10  

4 10 NTH (Number Theory) 7  

ALL 50  34  

 

 

You must do all 4 problems in this section of the exam. 
 

Problems will be graded based on the completeness of the solution steps and 

not graded based on the answer alone. Credit cannot be given unless all work 

is shown and is readable. Be complete, yet concise, and above all be neat.    

 



Spring 2016 Discrete Structures Exam, Part A 

Page 2 of 5 

 

1) (15 pts) PRF (Induction)  

 

Use strong induction to prove that, for every non-negative integer, 𝑛, 𝐹𝑛 is even if and only if 3 

divides 𝑛. Here 𝐹𝑛 is the Fibonacci sequence given by the recurrence: 

 

𝐹0 = 0 
𝐹1 = 1 
𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 

 

Let 𝑃(𝑛) be the open statement 𝐹𝑛 is even if and only if 3 divides 𝑛. 

 

Basis Step: 

Case 𝑃(0): 

𝐹0 = 0 and 0 is even. We also know 3 | 0. 

 

Case 𝑃(1): 

𝐹1 = 1 and 1 is odd. We also know 3 ∤ 1. 

 

Inductive Hypothesis: 

Assume for some arbitrary positive integer k, that for all 0 ≤ 𝑗 ≤ 𝑘, 𝑃(𝑗) is true. That is: 

 

𝐹𝑗 is even ⇔ 3 | 𝑗 

 

Inductive Step: Show that 𝑃(𝑘 + 1) follows: 

 

We must show two directions 3 | 𝑘 + 1 ⇒ 𝐹𝑘+1 is even and 𝐹𝑘+1 is even ⇒ 3 | 𝑘 + 1. The 

second case we will show through the contrapositive. 

 

Case (3 | 𝑘 + 1): In this case 3 ∤ 𝑘 − 1 and 3 ∤ 𝑘. From our inductive hypothesis 𝐹𝑘−1 and 𝐹𝑘 

are both odd. The sum of two odd integers is even. Thus, 𝐹𝑘+1 is even. 

 

Case (3 ∤ 𝑘 + 1): In this case either 3 | 𝑘 or 3 | 𝑘 − 1 but not both. From our inductive 

hypothesis either 𝐹𝑘−1 or 𝐹𝑘 must be odd and the other even. The sum of an odd integer and an 

even integer is odd. Thus, 𝐹𝑘+1 is odd. 

 

As we have shown 3 | 𝑘 + 1 ⇒ 𝐹𝑘+1 is even and 3 ∤ 𝑘 + 1 ⇒ 𝐹𝑘+1 is odd, it holds that  
3 | 𝑘 + 1 ⇔ 𝐹𝑘+1 is even or in other words 𝑃(𝑘 + 1) is true. 

 

By the principle of mathematical induction, 𝑃(𝑛) is true for all non-negative integers, n.   

 

 

Note: An alternative solution that breaks down Fk+1 to a combination of Fk-1 and Fk-2 

requires 3 base cases instead of 2. 

 

Grading: Base case - 3 pts, IH - 2 pts, IS - 2 pts, Case (3 | (k+1) - 4 pts, Case (𝟑 ∤ 𝒌 + 𝟏) - 4 

pts.  
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2) (10 pts) PRF (Logic)  

 

Here we have discovered some “rules of inference” that aren’t valid. Invalidate them by 

finding counter-examples that make each premise true but make the conclusion false. 

 

 

(a) 𝑝 ∨ 𝑞 
¬𝑝 ∨ ¬𝑞            ̲̲ ̲̲ ̲̲ ̲̲ ̲̲ ̲̲ ̲̲ ̲̲ ̲̲ ̲  

∴ 𝑝  

 

Let 𝑝 = 𝐹, 𝑞 = 𝑇. This is the only counterexample that works. In this case, both premises are 

true (first is true due to q, second is true due to p), and the conclusion is false. 

 

Grading: 4 pts, all or nothing, no explanation necessary. 

 

 

 

 

(b) (𝑝 → 𝑞) → 𝑟 
¬𝑟                     ̲̲ ̲̲ ̲̲ ̲̲ ̲̲ ̲̲ ̲̲ ̲̲ ̲̲   
∴ ¬𝑝  

 

Let 𝑝 = 𝑇, 𝑞 = 𝐹, 𝑟 = 𝐹. This is also the only counterexample possible. In this case, the first 

premise is true because the left hand side is false, which makes the whole premise true. The 

second premise is true since r is false. Finally, the conclusion is false since p is true. 

 

Grading: 4 pts, all or nothing, no explanation necessary. Note - an alternative solution 

takes the two premises and uses them to prove that p must follow. This solution ALSO 

earns full credit. 

 

(c) 𝑝 → (𝑞 → 𝑟) 
¬𝑟                   ̲̲ ̲̲ ̲̲ ̲̲ ̲̲ ̲̲ ̲̲ ̲̲ ̲  
∴ 𝑝   

 

 

Let 𝑝 = 𝐹, 𝑞 = 𝑇/𝐹, 𝑟 = 𝐹. Here 𝑝 and 𝑟 must be false but 𝑞 can be either for a 

counterexample. 

 

Grading: 2 pts, all or nothing, no explanation necessary. 
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3) (15 pts) PRF (Sets)  

 

Show for finite sets 𝐴, 𝐵, 𝐶 that if 𝐵 ∪ 𝐶 ⊆ 𝐴 and 𝐴 × 𝐵 ⊆ 𝐴 × 𝐶, then 𝐵 ⊆ 𝐶. 

 

We must show an arbitrary element of 𝐵 must also be in 𝐶. Let 𝑏 ∈ 𝐵 arbitrarily. This element 

𝑏 must also be an element of 𝐵 ∪ 𝐶. As 𝑏 ∈ 𝐵 ∪ 𝐶 and 𝐵 ∪ 𝐶 ⊆ 𝐴, it follows that 𝑏 ∈ 𝐴. 

 

From Cartesian product’s definition, since 𝑏 ∈ 𝐴 and 𝑏 ∈ 𝐵, (𝑏, 𝑏) ∈ 𝐴 × 𝐵. Now it follows 

from 𝐴 × 𝐵 ⊆ 𝐴 × 𝐶 that (𝑏, 𝑏) ∈ 𝐴 × 𝐶. This means that 𝑏 ∈ 𝐴 and 𝑏 ∈ 𝐶. Completing our 

proof since we've shown that 𝑏 ∈ 𝐶. 

 

QED 
 

Grading: 3 pts for stating what needs to be proved and starting with a premise of an 

element in B. 3 pts for concluding that the element is in A. 2 pts for concluding that (b,b) 

is in A x B. 2 pts for finishing the proof. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Disprove for finite sets 𝐴, 𝐵, 𝐶 that if 𝐴 × 𝐵 ⊆ 𝐴 × 𝐶, then 𝐵 ⊆ 𝐶. 

 

Let 𝐴 = ∅, 𝐵 = {1, 2}, 𝐶 = {2}. In this case, both 𝐴 × 𝐵 and 𝐴 × 𝐶 are the empty set since A 

is the empty set, making the premise true, but B isn't a subset of C since B contains 1 and C 

doesn't. 

 

Grading: 4 pts counter-example, 1 pt explanation  
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4) (10 pts) NTH (Number Theory) 

 

Prove that for any two distinct primes 𝑎 and 𝑏 there exists some prime 𝑐 distinct from both 𝑎 

and 𝑏 such that 𝑐 | (𝑎 + 𝑏). 

 

There are two cases we must consider: 

 

Case 1: 

Suppose that 𝑎 and 𝑏 are both odd primes. As 𝑎 and 𝑏 are both odd, 𝑎 + 𝑏 must be even. This 

means the prime number 2 divides 𝑎 + 𝑏. As 2 equals neither 𝑎 nor 𝑏 we have found a 𝑐 

meeting our criteria. 

 

Case 2: 

There is only one even prime, 2. Let 𝑎 = 2 without loss of generality and 𝑏 be some other odd 

prime. We will show that 2 + 𝑏 is divisible by some prime neither 2 nor 𝑏 by contradiction. 

 

Suppose 2 and 𝑏 are the only prime divisors of 2 + 𝑏. The number 2 + 𝑏 is odd as 2 is even 

and 𝑏 is odd. Thus 2 is not a divisor of 2 + 𝑏. We also know that 𝑏 does not divide 2 + 𝑏 by 

the division algorithm as 2 + 𝑏 = (1)𝑏 + 2, 0 ≤ 2 < 𝑏. But this contradicts that 2 + 𝑏 must be 

representable by the product of primes by the fundamental theorem of arithmetic. Therefore, 

some other prime 𝑝 must divide 2 + 𝑏. Alternatively, we can argue that (2 + 𝑏) ≡ 2(𝑚𝑜𝑑𝑏) 

because b is greater than 2, proving that b isn't a divisor of (2 + 𝑏). 

 

QED 
 

Alternate proof: Since a ≠ b, it follows that a doesn't divide evenly into a+b and b doesn't 

divide evenly into a+b, since a ∤ b and b ∤  a. (A slightly more formal proof is showing that 

a+b≡a (mod b) and since a and b are distinct primes, a ≢ 0 (mod b), and vice versa.) 

 

By the Fundamental Theorem of Arithmetic, if follows that a+b has a unique prime 

factorization, and must have at least one prime factor. Since that prime factor isn't a or b, a 

distinct prime factor c must exist. 

 

Grading: Notes - there are other ways to prove these. Criteria for this solution: 

 

5 pts even case, 5 pts odd case 

 

Alternate criteria solution - 5 pts explanation that a and b don't divide a+b, 5 pts for 

concluding that a different prime must. 
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Computer Science Foundation Exam 

 
May 6, 2016 

 

Section II B 

DISCRETE STRUCTURES 

NO books, notes, or calculators may be used,  

and you must work entirely on your own. 

 

SOLUTION 

Question Max Pts Category Passing Score 

1 15 CTG (Counting) 10  

2 10 PRB (Probability) 7  

3 15 PRF (Functions) 10  

4 10 PRF (Relations) 7  

ALL 50  34  

 

 

You must do all 4 problems in this section of the exam. 
 

Problems will be graded based on the completeness of the solution steps and 

not graded based on the answer alone. Credit cannot be given unless all work 

is shown and is readable. Be complete, yet concise, and above all be neat.    
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1) (15 pts) CTG (Counting)  

 

Please leave your answers in factorials, permutations, combinations and powers. Do not 

calculate out the actual numerical value for any of the questions. Justify your answers. 

 

(a) (5 pts) If seven people are to be seated in a single row with ten chairs, how many unique 

arrangements are possible? (For example, if the people are labeled P1 through P7 and we use B 

to denote an empty chair, then one possible arrangement is P1, B, B, P2, P4, P3, P7, P5, B, P6. 

Notice that the people are distinguishable but the empty chairs aren't.) 

 

One process for counting the possibilities (where our guests are “A” through “G”) is: 

- Seat Guest A – 10 choices   Seat Guest E – 6 choices 

- Seat Guest B – 9 choices   Seat Guest F – 5 choices 

- Seat Guest C – 8 choices   Seat Guest G – 4 choices 

- Seat Guest D – 7 choices 

 

Naturally, all the remaining seats are left empty. By the rule of product, the number of unique 

arrangements is 
10!

3!
. (Grading - 2 pt product, 3 pts terms) 

 

(b) (10 pts) How many of the arrangements from part (a) guarantee that none of the empty 

chairs are adjacent to one another? 

 

Let x1 equal the number of chairs left of the first empty chair, x2 equal the number of chairs in 

between the first two empty chairs, x3 be the number of empty chairs in between the last two 

empty chairs and x4 equal the number of chairs to the right of the last empty chair. The number 

of non-negative integer solutions to the equation below is the number of ways to choose the 

empty chairs: 

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 7 
 

such that 𝑥2 > 0 and 𝑥3 > 0. We can deal with these restrictions by simply setting up new 

non-negative integer variables 𝑥2 = 𝑥2
′ + 1 and 𝑥3 = 𝑥3

′ + 1, where 𝑥2
′ ≥ 0 and 𝑥3

′ ≥ 0. Thus, 

now we want to find the number of non-negative integer solutions to: 

 

𝑥1 + 𝑥2
′ + 1 + 𝑥3

′ + 1 + 𝑥4 = 7 

𝑥1 + 𝑥2
′ + 𝑥3

′ + 𝑥4 = 5 
 

Using the combinations with repetition formula, we find that the number of non-negative 

solutions to the equation above is (
5 + 4 − 1

4 − 1
) = (

8
3

). 

 

Finally, the 7 people can be placed in the 7 non-empty chairs in 7! ways, so the final answer is 

(
8
3

)7!. 

 

Grading: 7 pts for # of ways to choose empty chairs (many ways to do this, give partial as 

you see fit), 2 pts for seating the people, 1 pt for multiplying the two. 
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2) (10 pts) PRB (Probability) 

 

A mad scientist has created a probability-driven lock that can be permanently affixed to all 

manner of things (gym bags, lockers, vehicles, door locks, and so on). The lock has a five-digit 

LED display and a single button, and works as follows: 

 

Once the lock is closed, if you want to open it, you press the button, and it generates a random 

sequence of five digits on its display. (Each digit is a random integer on the range zero through 

nine.) If the product of all five digits is odd, the lock opens. Otherwise, you have to press the 

button again to generate another random sequence of digits. 

 

If you press the button three times without getting the lock to open, it seals itself shut forever. 

 

If you put one of these locks on something, what is the probability that you’ll actually be able 

to get it to open again? 

 
The key insight here is that if any one of the five digits is even, then you have a factor of two in your overall 

product, and therefore the product is even. In order for the product to be odd, all five digits must be odd. 

 

Since each of the five digits can either be even or odd (each with equal probability), we can consider the size of 

the sample space for a single press of the lock’s button to be 25 = 32. There is only one way for the product to be 

odd (that is, for all the digits to be even), so the probability of an odd product is 
1

32
 = 0.03125. This means the 

probability of an even product is 
31

32
. 

 

Another way to conceive of the sample space is to look at all possible five-digit numbers that could pop up. There 

are 105 = 100,000 such numbers. The number of outcomes where all five digits are odd is 55 = 3,125, since 

there are five odd digits in the range zero through nine. So, the probability of an odd product is 
3,125

100,000
= 0.03125. 

 

The probability of getting three even products in a row is (
31

32
)

3

. That also corresponds to the probability that the 

lock will be sealed shut forever. So, the probability that you’ll actually succeed in opening the lock is 1 −

 (
31

32
)

3

≈ 9.085%. 

 

Alternate Solution: Another way to arrive at that probability is to realize that you could open the lock on the 

first, second, or third try. These mutually disjoint events give rise to the following sum of probabilities: 

 

(
1

32
) + (

31

32
) (

1

32
) + (

31

32
) (

31

32
) (

1

32
) ≈ 9.085% 

 

 

Grading: 

3 pts for realizing that the product is odd only if all five digits are odd. 

3 pts for the cardinality of the sample space. 

4 pts for their approach to the final answer (event complement or sum of probabilities) 

 

Please award partial credit for each piece as appropriate. 
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3) (15 pts) PRF (Functions)  

 

(a) (4 pts) Define finite sets 𝐴 and 𝐵 that satisfy all three of the following criteria 

simultaneously: 

 

1. 𝐴 and 𝐵 are non-empty. 

2. There exists a surjective function from 𝐴 to 𝐵. 

3. Every possible surjective function from 𝐴 to 𝐵 is also injective. 

 

For this question, any sets 𝐴 and 𝐵 that are both non-empty (2 pts) and have the same 

cardinality (2 pts) will work. 

 

(b) (4 pts) Define finite sets 𝐴 and 𝐵 that satisfy all three of the following criteria 

simultaneously: 

 

1. 𝐴 and 𝐵 are non-empty. 

2. There exists an injective function from 𝐴 to 𝐵. 

3. It is impossible to define an injective function from 𝐴 to 𝐵 that is also surjective. 

 

For this question, any sets 𝐴 and 𝐵 that are both non-empty (2 pts) and where |𝐴| < |𝐵| 
(2 pts) will work. 

 

(c) (4 pts) Define finite sets 𝐴 and 𝐵 that satisfy all three of the following criteria 

simultaneously: 

 

1. 𝐴 and 𝐵 are non-empty. 

2. There exists an injective function from 𝐴 to 𝐵. 

3. It is possible to define an injective function from 𝐴 to 𝐵 that is also surjective. 

 

For this question, any sets 𝐴 and 𝐵 that are both non-empty (2 pts) and where |𝐴| = |𝐵| 
(2 pts) will work. 

 

(d) (3 pts) Define finite sets 𝐴 and 𝐵 that satisfy both of the following criteria simultaneously: 

 

1. 𝐴 and 𝐵 are non-empty. 

2. It is impossible to define a function from 𝐴 to 𝐵 that is not injective. 

 

For this question, 𝐴 must contain a single element (2 pts), and 𝐵 must be non-empty (1 pt). 
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4) (10 pts) PRF (Relations)  

 

(a) (3 pts) What three properties must a relation satisfy in order to be a partial ordering 

relation? 

 

It must be reflexive, transitive, and antisymmetric. 

 

Grading: 

-1 pt for each incorrect property listed 

-1 pt for each correct property missing from the list 

 

 

(b) (7 pts) Consider the relation ℛ on ℤ+ defined as follows: For all positive integers 𝑥 and 𝑦, 
(𝑥, 𝑦) ∈  ℛ if 𝑦 is divisible by 𝑥. Prove or disprove that ℛ is a partial ordering relation. 

 

𝓡 is reflexive: 
𝑥 | 𝑥 for all positive integers 𝑥, so (𝑥, 𝑥) ∈ ℛ. Therefore, ℛ is reflexive. 

 

𝓡 is transitive: 

If (𝑥, 𝑦) ∈ ℛ and (𝑦, 𝑧) ∈ ℛ, then we know 𝑥 | 𝑦 and 𝑦 | 𝑧. It follows that 𝑦 = 𝑥𝑚 for some 

integer 𝑚, and 𝑧 = 𝑦𝑛 for some integer 𝑛. Thus, 𝑧 = (𝑥𝑚)𝑛 = 𝑥(𝑚𝑛), and since 𝑚𝑛 is an 

integer, we have that 𝑥 | 𝑧. Therefore, (𝑥, 𝑧) ∈ ℛ. 

 

𝓡 is antisymmetric: 

If (𝑥, 𝑦) ∈ ℛ and (𝑦, 𝑥) ∈ ℛ, we know 𝑥 | 𝑦 and 𝑦 | 𝑥. Due to the former, there exists a 

positive integer c such that y = cx. Due to the latter, there exists a positive integer integer d 

such that x = dy. Substituting the second equation into the first, we find that y = cx = c(dy), so 

y = cdy. Since y must be non-zero, we get cd = 1. Since c and d are positive, it follows that 

both must be 1 and x and y are equal.  Therefore, ℛ is antisymmetric. 

. 

Grading: 

1 pts for reflexive 

3 pts for transitive 

3 pts for antisymmetric 

 

If they try to prove (or disprove) the wrong properties, try to award at least half credit for the 

properties they worked with. 

 


