
Page 1 of 6

Computer Science Foundation Exam

May 6, 2016

Section I A

COMPUTER SCIENCE

NO books, notes, or calculators may be used,

and you must work entirely on your own.

SOLUTION

Question # Max Pts Category Passing Score

1 10 DSN 7

2 10 ANL 7

3 10 ALG 7

4 10 ALG 7

5 10 ALG 7

TOTAL 50 35

You must do all 5 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and

not graded based on the answer alone. Credit cannot be given unless all work

is shown and is readable. Be complete, yet concise, and above all be neat.

Spring 2016 Computer Science Exam, Part A

Page 2 of 6

1) (10 pts) DSN (Recursive Functions)

Complete the function below, to create a recursive function productDigits that takes in 1

parameter, a non-negative integer, n, and returns the product of n's digits. For example

productDigits(232) will return 12 (2 x 3 x 2), and productDigits(13999019) will return 0.

int productDigits(int number){

 if(number < 10)

 return number;

 return (number%10) * productDigits(number/10);

}

Grading:

3 pts for base case

7 pts for recursive call - 1 pt return, 2 pts for getting last digit, 1 pt mult, 1 pt rec call

 2 pts number/10

Spring 2016 Computer Science Exam, Part A

Page 3 of 6

2) (10 pts) ANL (Summations)

a) (5 pts) Determine the value of the following summation, in terms of n: ∑ (4𝑖 + 7)2𝑛
𝑖=1 . Express

your final answer as a polynomial in the form an2 + bn, where a and b are integers.

∑(4𝑖 + 7)

2𝑛

𝑖=1

= (4∑𝑖

2𝑛

𝑖=1

) +∑7

2𝑛

𝑖=1

= 4 ×
2𝑛(2𝑛 + 1)

2
+ 7(2𝑛)

= 2(2𝑛)(2𝑛 + 1) + 14𝑛

= 8𝑛2 + 4𝑛 + 14𝑛

= 8𝑛2 + 18𝑛

Grading: 1 pt for split, 2 pts for sum to i formula, 1 pt sum constant, 1 pt simplify

b) (5 pts) Determine the value of the summation below:

 ∑ (3𝑖 + 1)100
𝑖=21 = ∑ (3𝑖 + 1100

𝑖=1) − ∑ (3𝑖 + 1)20
𝑖=1

 = ∑ (3𝑖) + ∑ 1100
𝑖=1

100
𝑖=1 − (∑ (3𝑖) + ∑ 120

𝑖=1)20
𝑖=1

 = 3 ×
100×101

2
+ 100 − (3 ×

20×21

2
+ 20)

 = 3 × 50 × 101 + 100 − 3 × 10 × 21 − 20

 = 3 × 5050 + 100 − 30 × 21 − 20

 = 15150 + 100 − 630 − 20

 = 14600

Grading (5 pts total): 1 pt for splitting sum, 3 pts for properly plugging into formulas for

both sums, 1 pt for simplification

Spring 2016 Computer Science Exam, Part A

Page 4 of 6

3) (10 pts) ALG (Stacks)

A stack of positive integers is implemented using the struct shown below. Using this

implementation of the stack write the push and peek functions. Assume that when a struct stack

is empty, its top variable is equal to -1.

#define MAX 12

struct stack{

 int top; /* indicates index of top */

 int nodes[MAX] ;

};

// Attempts to push value onto the stack pointed to by s.

// If the stack is full 0 is returned and no action is taken.

// Otherwise, value is pushed onto the stack and 1 is returned.

int push(struct stack* s, int value){

 if(s->top >= MAX-1)

 return 0;

 s->nodes[s->top + 1] = value;

 s->top++;

 return 1;

}

Grading: 2 pts for full case, 2 pts for insertion, 1 pt update top, 1 pt return

// Returns the value at the top of the stack. If the stack is

// empty, -1 is returned.

int peek(struct stack* s){

 if(s-> top == -1)

 return -1;

 return s->nodes[s->top];

}

Grading: 2pt for empty case, 2 pts for return in regular case.

Spring 2016 Computer Science Exam, Part A

Page 5 of 6

4) (10 pts) ALG (Binary Search Trees and Hash Tables)

a) (5 pts) Show the AVL tree created when 19 is added to the AVL tree below

Grading: 5 pts total - GIVE FULL CREDIT IF FINAL TREE IS CORRECT

 1 for inserting 19 in the correct position

 2 pt for left rotation

 2 pt for right rotation (for rotation trace)

b) (5 pts) In a binary heap of 100 elements, how many elements are at a depth of 6 (lowest level)

from the root of the heap? (Note: the depth of an element is the number of links that have to be

traversed from the root of the tree to reach it.)

A binary heap fills in each row before moving onto the next, since its structure is always a

complete binary tree. Thus, the number of nodes at depths 0 through 5 are 1, 2, 4, 8, 16, and 32,

respectively. This sums to 63. Thus, the next 37 nodes will all be at a depth of 6 from the root.

37

Grading: 2 pts for observation of heap structure, 2 pts for counting up the nodes at all the

previous levels, 1 pt for calculating the final answer.

Spring 2016 Computer Science Exam, Part A

Page 6 of 6

5) (10 pts) ALG (Base Conversion)

a) Convert the hexadecimal number AF2E9 to binary without first converting to the base 10

equivalent

 A F 2 E 9

 10 15 2 14 9 1010 1111 0010 1110 1001

1010 1111 0010 1110 1001

Grading: 5 pts total - 1 pt for each group of 4 bits. All 4 bits in the group have to be

correct to get the point.

b) Frank is the team-lead for the software testing team at his job. He is celebrating his

birthday. Some of his co-workers have baked a cake for the celebration and thought that

it would be really cool to put candles on his cake to represent his age in binary. An unlit

candle represents the 0 bit. From the pic of the cake below, how old is Max?

 100111

 32 4 2 1

= 32 + 4 + 2 + 1 = 39

 Grading: 5 pts total

 4 pts : 1 for decimal for each digit

 1 pt for final answer

 Note: Also give full credit for 32 + 16 + 8 + 1 = 57, though most students will

 read left to right.

Page 1 of 6

Computer Science Foundation Exam

 May 6, 2016

Section I B

COMPUTER SCIENCE

NO books, notes, or calculators may be used,

and you must work entirely on your own.

SOLUTION

Question # Max Pts Category Passing Score

1 10 ANL 7

2 10 ANL 7

3 10 DSN 7

4 10 DSN 7

5 10 ALG 7

TOTAL 50 35

You must do all 5 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat.

Spring 2016 Computer Science Exam, Part B

Page 2 of 6

1) (10pts) ANL (Algorithm Analysis)

Determine the best case run time in terms n for each of the following functions/operations.

a) Finding the maximum value in an unsorted linked list of n elements O(n)

b) Inserting an item into a binary search tree of n elements O(1)

c) Inserting an item into a binary heap of n elements O(1)

d) Sorting an array of n elements using Merge Sort O(nlgn)

e) Deleting an element from a circular linked list of n elements O(1)

Grading: 1 pt each, must be correct to earn the point.

Determine the worst case run time in terms of n for each of the following functions/operations.

f) Deleting an item from an AVL tree of n elements O(lg n)

g) Deleting the minimum item from a binary min heap of n elements O(lg n)

h) Inserting an item into a binary search tree of n elements O(n)

i) Sorting an array of n elements using Heap Sort O(nlgn)

j) Deleting an element from a doubly linked list of n elements O(n)

Grading: 1 pt each, must be correct to earn the point.

Spring 2016 Computer Science Exam, Part B

Page 3 of 6

2) (10 pts) ANL (Algorithm Analysis)

a) (5 pts) Given that a function has time complexity O(n2), if the function takes 338 ms for an input of

size 13000, how long will the same function take for an input of size 8000?

 𝑇(𝑛) = 𝑐𝑛2

 𝑇(13000) = 𝑐130002 = 338𝑚𝑠

 𝑐 =
338

132
×

1

106
𝑚𝑠 =

338

169
× 10−6𝑚𝑠 = 2 × 10−6𝑚𝑠

 𝑇(8000) = 𝑐(8000)2 = (2 × 10−6𝑚𝑠) × 82 × 106 = 128𝑚𝑠

128 ms

Grading: 2 pts for computing the constant c, 2 pts substituting 8 into general equation to find

time for input size of 8000, 1 pt for simplifying the final answer.

b) (5 pts) What is the run-time of the segment of code below, in terms of the variables n and k? Please

provide a Big-Oh bound and briefly justify your answer. (Assume k has already been defined as set to a

value prior to the code segment shown.)

int i, total = 0;

for (i=0; i<n; i+=2) {

 int start = k;

 while (start > 0) {

 total += ((k|i) & start);

 start /= 2;

 }

}

The outer loop runs n/2 times. The inner loop will always run O(lg k) times, since k never changes

during the code segment and each iteration of the while loop divides start by 2. Since the two loops are

independent of each other in terms of number of times they run, it follows that the run time of the code

segment is O(nlg k).

O(nlg k)

Grading: 2 pts outer loop analysis, 2 pts inner loop analysis, 1 pt final answer

Spring 2016 Computer Science Exam, Part B

Page 4 of 6

3) (10 pts) DSN (Linked Lists)

Write a function, mode, that takes in a pointer to the front of a linked list storing integers, and returns

the mode of the list of integers. Recall that the mode of a list of values is the value that occurs most

frequently. You may assume that all of the integers in the list are in between 0 and 999, inclusive. If

there is more than one mode, your function must return the smallest of all of the modes. (For example, if

the list contains the values 2, 4, 3, 2, 2, 4, 1, and 4, your function must return 2 and should NOT return

4, since both 2 and 4 occur three times in the list but 2 is smaller than 4.) Hint: declare an auxiliary array

inside of the mode function. You may assume that the list pointed to by front is non-empty.

Use the struct definition provided below.

#include <stdlib.h>

#include <stdio.h>

#define MAX 1000

typedef struct node {

 int value;

 struct node* next;

} node;

int mode(node* front) {

 int freq[MAX], i;

 for (i=0; i<MAX; i++)

 freq[i] = 0;

 while (front != NULL) {

 freq[front->value]++;

 front = front->next;

 }

 int res = 0;

 for (i=1; i<MAX; i++)

 if (freq[i] > freq[res])

 res = i;

 return res;

}

Grading: 3 pts initializing frequency array, 4 pts filling frequency array, 3 pts finding index of

maximum value of frequency array. Only take off 1 pt if ties are broken incorrectly.

Note: Please readjust points for solution ideas different than this as necessary.

Spring 2016 Computer Science Exam, Part B

Page 5 of 6

4) (10 pts) DSN (Binary Trees)

For this problem you will write a modified inorder traversal of a binary tree. In a regular inorder

traversal, you simply visit the nodes of the tree "in order". Consider the added task of adding up all of

the numbers as you see them in the traversal, one by one, and printing out each intermediate sum. For

example, if the input binary tree was:

 10

 / \

 15 8

 / \ \

 3 12 17

 /

 10

the corresponding inorder traversal would visit 3, 15, 10, 12, 10(root), 8 and 17, in that order. For the

added task, the traversal should print out 3, 18, 28, 40, 50, 58 and 75, respectively, the running sums

after visiting each value.

Complete the function below, recursively, so that is performs the given task. One way to accomplish this

is to have the function take in a second value, prevSum, representing the previous sum of values prior

to visiting the given node, and also to have the function return the sum of the nodes in its subtree.

typedef struct treenode {

 int value;

 struct treenode *left;

 struct treenode *right;

} treenode;

int inorderSum(treenode* root, int prevSum) {

 if (root == NULL) return 0;

 int sum = 0;

 sum += inorderSum(root->left, prevSum);

 sum += root->value;

 printf("%d ", sum+prevSum);

 sum += inorderSum(root->right, prevSum+sum);

 return sum;

}

Grading: There are 10 blanks, give 1 pt for each blank. If two blanks are slightly wrong, you may

award 1 pt for both of them together.

Spring 2016 Computer Science Exam, Part B

Page 6 of 6

5) (10 pts) ALG (Sorting)

For this question, implement the (very slow) sorting algorithm described below:

1. Randomly choose two distinct array indexes, i and j. (If i and j are equal, choose again.)

2. If array[min(i,j)] > array[max(i,j)], swap the two values.

3. Check if the array is sorted. If it's not, go back to step 1. If it is, return.

Recall that the function call rand() returns a random non-negative integer, so rand()%n will equal

a random integer in between 0 and n-1.

#include <stdlib.h>

#include <stdio.h>

#include <time.h>

int min(int a, int b) {if (a < b) return a; return b;}

int max(int a, int b) {if (a > b) return a; return b;}

void randomSort(int* array, int length) {

 while (1) {

 int i = 0, j = 0;

 while (i == j) {

 i = rand()%length;

 j = rand()%length;

 }

 int minI = min(i,j);

 int maxI = max(i,j);

 if (array[minI] > array[maxI]) {

 int temp = array[minI];

 array[minI] = array[maxI];

 array[maxI] = temp;

 }

 int sorted = 1;

 for (i=0; i<length-1; i++)

 if (array[i] > array[i+1])

 sorted = 0;

 if (sorted) break;

 }

}

Grading: 3 pts picking random indices, 3 pts performing swap, if necessary, 3 pts check at end, 1

pt stopping/breaking if the array is sorted

