
Page 1 of 6

Computer Science Foundation Exam

 May 3, 2013

Section I B SOLUTION

COMPUTER SCIENCE

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name:

PID:

Question # Max Pts Category Passing Score

1 10 ANL 7

2 10 DSN 7

3 10 DSN 7

4 10 ALG 7

5 10 ALG 7

TOTAL 50

You must do all 5 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat.

Spring 2013 Computer Science Exam, Part B

Page 2 of 6

1) (10pts) ANL (Algorithm Analysis)

(a) (6 pts) List the best case and worst case of each of the following algorithms/operations in terms of

their input size, n:

 (i) Inserting an item into a Linked List of n elements in sorted order

 best case: O(1) worst case: O(n) (Grading: 1 pt each)

 (ii) A Quick Sort of n elements

 best case: O(nlgn) worst case: O(n
2
) (Grading: 1 pt each)

 (iii) Accessing an element in a hash table

 best case: O(1) worst case: O(n) (Grading: 1 pt each)

(b)(4 pts)For each of the code snippets below, write the run-time for each snippet of code, using

order notation in terms of the variable N:

int i = 0, j = 0, k = 0; (Grading: 1 pt each)
for (i = 0; i < N; i++)

 for(j = 0; j < i; j++)

 k += j;

O(N
2
)

int i = 0, j = 0, k = 0;

for (i = 0; i < N; i++)

 for(j = 0; j < 2*N; j++)

 k += j;

O(N
2
)

int i = 0, j = 0, k = 0;

for (i = 0; i < N; i++)

 for(j = 0; j < 10; j++)

 k += j;

O(N)

int i = 0, j = 0, k = 0;

for (i = 0; i < N; i++)

 for(j = N; j > 0; j=j/2)

 k += j;

O(NlgN)

Spring 2013 Computer Science Exam, Part B

Page 3 of 6

2) (10 pts) DSN (Recursive Algorithms – Binary Trees)

Write a recursive function isBSTRec that determines whether a binary tree is also a binary search tree

with all values within a given range. Your function will take in a pointer to the root of a binary tree as

well both a minimum and maximum value. Your function should return 1 if and only if the tree pointed

to by root is a valid binary search tree with all values in between min and max inclusive. Otherwise, the

function should return 0. You may assume that root points to a valid node and is not NULL. Complete

the function.

struct treeNode {

 int data;

 struct treeNode *left;

 struct treeNode *right;

};

int isBST(struct treeNode* root, int min, int max) {

 if ((root->data < min) || (root->data > max)) // 2 pts

 return 0; // 1 pt

 int ans = 1;

 if(root->left != NULL) // 3 pts

 ans = ans && isBSTRec(root->left, min, root->data);

 if(root->right != NULL) // 3 pts

 ans = ans && isBSTRec(root->right, root->data, max);

 return ans; // 1 pt

}

Spring 2013 Computer Science Exam, Part B

Page 4 of 6

3) (10 pts) DSN (Linked Lists)

Imagine using a linked list to store a string. In particular, each node of the linked list stores a single

character, with the leftmost character stored first in the list. Write a function that converts a standard C

string into this list representation. You may not assume that string.h has been included or include it.

The function should return a pointer to the front of the list.

struct node {

 char data;

 struct node *next;

};

struct node* str2lst(char *str) {

 struct node dummy_head;

 struct node *curr_ptr = &dummy_head;

 dummy_head.next = NULL;

 int i = 0;

 while(str[i]!='\0')

 {

 struct node *tmp =malloc(sizeof(struct node));

 tmp->next = NULL;

 tmp->data = str[i];

 curr_ptr->next = tmp;

 curr_ptr = tmp;

 i++;

 }

 return dummy_head.next;

}

struct node* str2lst(char *str) { // Grading:

 // 4 pts – new node

 int i = 0; // 3 pts - attaching

 while (str[i] != ‘\0’) i++; // 3 pts - ordering

 i--;

 struct node* ans = NULL;

 while (i >= 0) {

 struct node* temp = malloc(sizeof(struct node));

 temp->next = ans;

 temp->data = str[i];

 i--;

 ans = temp;

 }

 return ans;

}

Spring 2013 Computer Science Exam, Part B

Page 5 of 6

4) (10 pts) ALG (Base Conversion)

(a)(5 pts) Convert 2989 in base 10 to hexadecimal (base 16) using the deterministic algorithm taught in

class. (Note: An ad hoc method using guessing and checking will NOT be given credit!!!)

161 = 16 16 2 = 256 163 = 4096

2989/256 = 11 = B (1 pt)

173/16 = 10 = A (1 pt)

13 = D (1 pt)

ANSWER:BAD16 (2 pts)

(b)(5 pts) Convert C3D016 to base 8. (Note: Use an intermediate base for conversion. Either base

2 or base 10 will be accepted as this intermediate base.)

C3D0 = 1100 0011 1101 00002 = 1417208

Grading:4 pts for binary, 1 pt to convert to octal

Spring 2013 Computer Science Exam, Part B

Page 6 of 6

5) (10 pts) ALG (Sorting)

(a) (2 pts)

Is the array 10 6 8 1 3 1 7 a min-heap or a max-heap?

Max-heap (Grading: 0 or 2 pts)

(b) (2pts) Draw the binary tree representation of the heap

 10

 / \

 6 8

 / \ / \

1 3 1 7 (Grading: 0 or 2 pts)

(c) (2 pts) After an element is removed from the heap, write the values in the array, in the order they

appear in the array.

8 6 7 1 3 1 (2 pts correct, 1 pt if 4 or more are correct, 0 otherwise)

(d) (4 pts) Write the values in the array after the Partition algorithm from QuickSort is run on the array

shown below. Assume that the pivot is 37.

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Values 37 98 5 41 25 44 99 79 92 6 2 11 87 45 63

Give full credit to these two solutions: (1 pt off for each incorrect swap)

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Values 11 2 5 6 25 37 99 79 92 41 98 63 87 45 44

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Values 6 11 5 2 25 37 99 79 92 44 41 98 87 45 63

When grading this, there should be generous partial credit if the result is valid (ie, everything to the left

of 37 is below 37 and everything to the right is greater), but some values are out of place.

