Computer Science Foundation Exam

May 7, 2010

Section II A

DISCRETE STRUCTURES SOLUTIONS

NO books, notes, or calculators may be used, and you must work entirely on your own.

Name: _____

PID: _____

In this section of the exam, there are three (3) problems. You must do <u>ALL</u> of them. They count for 40% of the Discrete Structures exam grade. Show the steps of your work carefully.

Problems will be graded based on the completeness of the solution steps and <u>not</u> graded based on the answer alone.

Credit cannot be given when your results are unreadable.

Question #	Max Pts	Category	Passing	Score
1	15	PRF (Induction)	10	
2	15	PRF (Sets)	10	
3	10	PRF (Logic)	6	
ALL	40		26	

1) (15 pts) PRF (Induction)

Using induction to prove that to prove that $3 | (n^3 - n)$ for $n \ge 2$.

Base case: n = 2. $n^3 - n = 2^3 - 2 = 6$. Since $6 = 3 \ge 2, 3 \mid 6$ and the base case holds. // 2 pts

Inductive hypothesis: Assume for an arbitrary integer n = k ($k \ge 2$), that $3 | (k^3 - k) . // 2$ pts

Inductive step: Prove for n = k+1 that $3 | ((k+1)^3 - (k+1)) // 2$ pts

 $(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - k - 1 // 3 \text{ pts}$ = $k^3 - k + (3k^2 + 3k) // 2 \text{ pts}$ = $3c + (3k^2 + 3k)$, for some integer c, using the inductive hypothesis // 3 pts = $3(c + 3k^2 + 3k)$, proving that $3 | ((k+1)^3 - (k+1))$ as desired. // 1 pt 2) (15 pts) PRF (Sets)

(a) Prove the following for arbitrarily chosen sets *A*, *B* and *C*:

$$(A-C)-(B-C)\subseteq A-B$$

(b) Give a small example to show that these two sets, (A-C)-(B-C) and A-B, are not necessarily equal.

(a) Let x be an arbitrarily chosen element from (A - C) - (B - C). We must prove that x is also an element of A - B.

By definition of set difference twice we have:

 $\begin{array}{l} x \in A \ \land \ x \notin C \ \land \ x \notin (B - C). \\ x \in A \ \land \ x \notin C \ \land \ \neg (x \in B \ \land x \notin C). \end{array}$

Using DeMorgan's Law, we get:

 $x \in A \land x \notin C \land (\neg (x \in B) \lor \neg (x \notin C))$, which is the same as

 $x \in A \land x \notin C \land (x \notin B \lor x \in C)$, distributing, we get

 $x \in A \land [(x \notin C \land x \notin B) \lor (x \notin C \land x \in C)]$, using the inverse laws we have

 $x \in A \land [(x \notin C \land x \notin B) \lor F]$, and the identity law gives us

 $\mathbf{x} \in \mathbf{A} \land \mathbf{x} \notin \mathbf{C} \land \mathbf{x} \notin \mathbf{B}$

It follows that $x \in A - B$, by definition of set difference.

// Lots of different ways to do this, grade accordingly. For the method above, there are
// about 10 steps, so one point per step.

(b) Let $A = \{1\}$, $B = \{\}$ and $C = \{1\}$. Then, $A - C = \{\}$, $B - C = \{\}$, so $(A - C) - (B - C) = \{\}$, but $A - B = \{1\}$.

// 5 pts for this – 3 pts for specifying A, B and C, 2 pts for specifying (A-C)-(B-C) and A-B.

3) (10 pts) (PRF) Logic

Prove the following equivalence using the Laws of Logic only (In particular, do NOT use the Rules of Inference). Please list the rule you have used at each step.

$$[(p \to r) \lor (q \to r)] \leftrightarrow [(p \land q) \to r]$$

$$(p \to r) \lor (q \to r) \leftrightarrow$$

$$(\neg p \lor r) \lor (\neg q \lor r) \leftrightarrow$$

$$(\neg p \lor \neg q) \lor (r \lor r) \leftrightarrow$$

$$(\neg p \lor \neg q) \lor (r \lor r) \leftrightarrow$$

$$(p \lor q) \lor r \leftrightarrow$$

$$(p \lor q) \lor r \leftrightarrow$$

$$(p \lor q) \to r$$

Grading: 2 pts per step -1 for the step, 1 for the reason