

Computer Science Foundation Exam

May 8, 2009

Computer Science

Section 1A

Name: Grading Criteria

PID:

 Max

Pts

Type

Passing

Threshold

Student

Score

Q1 11 DSN 8

Q2 10 ANL 7

Q3 10 ALG 7

Q4 10 ALG 7

Q5 9 ALG 6

Total 50 35

You must do all 5 problems in this section of the exam.

Partial credit cannot be given unless all work is shown and is readable. Be

complete, yet concise, and above all be neat. Do your rough work on the last

page.

1) (11 points) Recursion Write a recursive function that encrypts a string using a Caesar cipher.

For those of you unfamiliar, a Caesar cipher works by shifting each letter three places in the

alphabet, so 'a' becomes 'd', 'b' becomes 'e', 'c' becomes 'f', and so on. Letters at the end of the

alphabet wrap around, so 'x', 'y', and 'z' become 'a', 'b', and 'c', respectively. You may assume that

the string consists entirely of lowercase letters. As an example, if your function is passed a string

containing "computer" then after your function is called, it should contain "frpsxwhu".

void caesar_cipher(char* str, int length)

{

Solution 1:
 if(length <= 0)

 return;

 str[length – 1] += 3;

 if(str[length – 1] > 'z')

 str[length – 1] -= 26;

 caesar_cipher(str, length – 1);

Solution 2:

 if(str[0] == '\0') // Something like this is a little iffy, but it should be accepted
 return;

 str[0] = ((str[0] – 'a') + 3) % 26 + 'a';

 caesar_cipher(str + 1, length – 1);

Grading Criteria:

There are many ways to approach this problem. Be reasonable when grading.

Base case – 3 points

Dealing properly with individual characters – 4 points

Making a proper recursive call – 4 points

}

2) (10 points) Summations

a) Consider the following code fragment:

for(i = 4; i <= n * n; i++) {

 sum = sum + 5 + i + n;

 for(j = 1; j <= 3 * i; j++) {

 sum = sum + n + j;

}

}

Write, but don't solve, a summation to describe the number of additions (not counting

increments) performed by that code fragment in terms of the variable n.

b) Obtain a simplified closed form solution for the following summation:

 



n

ni

ni
2

1

232

Solution:

a)

 
 
















2

4

3

1

23
n

i

i

j

b)

 

   
   

        133312431122

3112236
2

1
2

2

122
2

33223232

222

333

1

2
2

1

2

1

2

1

2

1

2
2

1

2

1

2











 


nnnnnnnnnnn

nnnnnnn
nnnn

nniinini
n

i

n

i

n

i

n

i

n

ni

n

ni

n

ni

Grading Criteria:
a)

Correct bounds on the outer summation – 2 points

Correct bounds on the inner summation – 2 points

Answer is otherwise correct – 1 point

b)

Splitting the summation into pieces – 2 points

Applying the correct formulas to the resulting pieces – 2 points

Simplifying the resulting closed form

3) (10 points) Stack Applications Transform the following infix expression into its equivalent

postfix expression using a stack. Show the contents of the stack at the indicated points 1, 2 and 3

in the infix expressions.

 1 2 3

(A * (B + C) - D) / (E + F) - G

Solution:

Resulting postfix expression:

A B C + * D - E F + / G -

Grading Criteria:
Each correct stack – 2 points

Resulting expression – 4 points

+

(

*

(/ -

1 2 3

4) (10 points) AVL Trees Construct an AVL tree by inserting integers into an initially empty

tree in the following order: 64, 32, 48, 72, 96, 56. Draw the state of the tree before and after each

necessary rotation. Be sure to draw the final state of the tree.

Solution:

Grading Criteria:

3 points per rotation

1 point for having the correct final tree

5) (9 points) Binary Tree Traversals

 Give the preorder, inorder, and postorder traversals of the binary tree shown above.

Solution:

Preorder:

4 1 6 8 5 3 7 2 9

Inorder:

6 8 1 3 5 4 9 2 7

Postorder:

8 6 3 5 1 9 2 7 4

Grading Criteria:

3 points per traversal

