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Computer Science Foundation Exam 

August 28, 2021 

Section I A 

DATA STRUCTURES 
NO books, notes, or calculators may be used,  

and you must work entirely on your own. 

 

Name:     ______________________________________________ 

UCFID:  ______________________________________________ 

NID: 

 

 

Question # Max Pts Category Score 

1 10 DSN  

2 5 ALG  

3 10 DSN  

TOTAL 25 ----  
  

  

You must do all 3 problems in this section of the exam. 
 

Problems will be graded based on the completeness of the solution steps and not 

graded based on the answer alone. Credit cannot be given unless all work is shown 

and is readable. Be complete, yet concise, and above all be neat. For each coding 

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that 

particular question have been made.       
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1) (10 pts) DSN (Dynamic Memory Management in C) 

 

Suppose we have an array to store all of the holiday presents we have purchased for this year. Now that 

the holidays are over and all the presents have been given out, we need to delete our list.  Our array is a 

dynamically allocated array of structures that contains the name of each present and the price.  The name 

of the present is a dynamically allocated string to support different lengths of strings. Write a function 

called delete_present_list that will take in the present array and free all the memory space that the array 

previously took up.  Your function should take 2 parameters: the array called present_list and an integer, 

num, representing the number of presents in the list and return a null pointer representing the now deleted 

list. (Note: The array passed to the function may be pointing to NULL, so that case should be handled 

appropriately.) 

 
struct present { 

 char *present_name; 

 float price; 

}; 

 

struct present* delete_present_list(struct present* present_list, int 

num) { 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

} 
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2) (5 pts) ALG (Linked Lists) 
  

Suppose we have a singly linked list implemented with the structure below and a function that takes in the 

head of the list.  

 
typedef struct node { 

    int num; 

    struct node* next; 

} node; 

 

int whatDoesItDo (node * head) { 

 struct node * current = head; 

 struct node * other, *temp; 

 

 if (current == NULL) 

        return head; 

 

 other = current->next; 

 

    if (other == NULL) 

        return head; 

 

    other = other->next; 

    temp = current->next;  

    current->next = other->next;  

    current = other->next; 

 

    if (current == NULL) { 

        head->next = temp; 

        return head; 

    } 

 

    other->next = current->next;  

    current->next = temp; 

 

    return head;  

} 

 

If we call whatDoesItDo(head) on the following list, show the list after the function has finished. 

 

head ->  1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 
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3) (10 pts) ALG (Queues) 

 

Suppose we wish to implement a queue using an array. The structure of the queue is shown below. 
 

struct queue { 

    int *array; 

    int num_elements; 

    int front; 

    int capacity; 

}; 

 

The queue contains the array and three attributes: the current number of elements in the array, the current 

front of the queue, and the maximum capacity. Elements may be added to the queue not just at the end of 

the array but also in the indices at the beginning of the array before front. Such a queue is called a circular 

queue. 

 

Write a function to implement the dequeue functionality for the queue, while ensuring that no null pointer 

errors occur. Your function should take in 1 parameter: a pointer to the queue. Your function should return 

the integer that was dequeued. If the queue is NULL or if there are no elements to dequeue, your function 

should return 0. 

 
int dequeue(struct queue * q) { 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

} 
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Computer Science Foundation Exam 

 August 28, 2021 

Section I B 

DATA STRUCTURES 

 
 

NO books, notes, or calculators may be used,  

and you must work entirely on your own. 

 

Name:     ______________________________________________ 

UCFID:  ______________________________________________ 

NID: 

 

 

Question # Max Pts Category Score 

1 10 ALG  

2 5 ALG  

3 10 ALG  

TOTAL 25   
  

You must do all 3 problems in this section of the exam. 
 

Problems will be graded based on the completeness of the solution steps and not 

graded based on the answer alone. Credit cannot be given unless all work is shown 

and is readable. Be complete, yet concise, and above all be neat. For each coding 

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that 

particular question have been made.        
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1) (10 pts) ALG (Binary Trees) 

 

Consider a function that takes in a pointer to a binary tree node and returns a pointer to a binary tree node 

defined below: 

 
typedef struct bintreenode { 

    int data; 

    struct bintreenode* left; 

    struct bintreenode* right; 

} btreenode; 

 

btreenode* somefunction(btreenode* root) { 

    if (root == NULL) return NULL; 

    somefunction(root->left); 

    somefunction(root->right); 

    btreenode* tmp = root->left; 

    root->left = root->right; 

    root->right = tmp; 

    return root; 

} 

Let the pointer tree point to the root node of the tree depicted below: 

 

      20 

     /  \ 

            42  13 

        /         \                          \ 

                                                  6         18                       27 

                                                 /         /      \                    /    \ 

                                               15     72       9                22   35 

                                                                                            / 

                                                                                          87 

 

If the line of code tree = somefunction(tree) were executed, draw a picture of the resulting 

binary tree that the pointer tree would point to. 
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2) (5 pts) ALG (Heaps) 

 

Suppose we construct a minheap where each node contains a string, and we order our strings according 

to the following rules: 

 

1. Given strings a and b, we say a < b if a has fewer characters than b. 

2. If two strings a and b have the same length, we say a < b if a comes before b in alphabetical 

order. 

 

Furthermore, suppose all the strings in our minheap contain lowercase letters only (so, no punctuation, 

spaces, uppercase letters, and so on), and we do not allow any duplicate strings into the minheap. 

 

Given two arbitrary strings in our minheap, x and y, can we safely say that if x is a prefix of y, then y must 

be in one of x’s subtrees? Note that x may not be stored at the root of the minheap. If so, explain why this 

must be the case. If not, draw a minheap of strings that very clearly shows this is not necessarily the case 

(and clearly label which string is x and which string is y in your counterexample). 
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3) (10 pts) ALG (AVL Trees) 

 

Draw an AVL tree of integers and designate a single node in the AVL tree such that, if that node were to 

be deleted, two rebalance operations (not one double rotation, but two separate operations at two different 

nodes) would occur. Clearly label the node to delete which would precipitate those operations and show 

the result of deleting that node. (Thus, you should have two drawings, a before drawing of the original 

tree with the node to be deleted clearly designated, and an after drawing showing what the tree looks like 

after the node is deleted and goes through 2 rebalance operations.) 
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Computer Science Foundation Exam 
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Section II A 

ALGORITHMS AND ANALYSIS TOOLS  

 

NO books, notes, or calculators may be used,  

and you must work entirely on your own. 

 

Name:     ___________________________________________ 

UCFID:  ___________________________________________ 

NID:       ___________________________________________ 

 

Question # Max Pts Category Score 

1 10 ANL  

2 10 ANL  

3 5 ANL  

TOTAL 25   
  

  

You must do all 3 problems in this section of the exam. 
 

Problems will be graded based on the completeness of the solution steps and not 

graded based on the answer alone. Credit cannot be given unless all work is shown 

and is readable. Be complete, yet concise, and above all be neat. For each coding 

question, assume that all of the necessary includes (stdlib.h, stdio.h, math.h, 

string.h) for that particular question have been made.        
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1) (10 pts) ANL (Algorithm Analysis) 

 

Consider the following problem: You are given a set of weights, {w0, w1, w2, …, wn-1} and a target 

weight T. The target weight is placed on one side of a balance scale. The problem is to determine if there 

exists a way to use some subset of the weights to add on either side of the balance so that the scale will 

perfectly balance or not. For example, if T = 12 and the set of weights was {6, 2, 19, 1}, then one 

possible solution would be to place the weights 6 and 1 on the same side of the balance as 12 and place 

the weight 19 on the other side.  

 

Below is a function that solves this problem recursively, with a wrapper function to make the initial 

recursive call. In terms of n, the size of the input array of weights, with proof, determine the worst case 

run time of the wrapper function. (Note: Since only the run time must be analyzed, it's not necessary 

to fully understand WHY the solution works. Rather, the analysis can be done just by looking at 

the structure of the code.) 

 
int makeBalance(int weights[], int n, int target) { 

    return makeBalanceRec(weights, n, 0, target); 

} 

 

int makeBalanceRec(int weights[], int n, int k, int target) { 

    if (k == n) return target == 0; 

    int left = makeBalanceRec(weights, n, k+1, target-weights[k]); 

    if (left) return 1; 

    int right = makeBalanceRec(weights, n, k+1, target+weights[k]); 

    if (right) return 1; 

    return makeBalanceRec(weights, n, k+1, target); 

} 
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2) (10 pts) ANL (Algorithm Analysis) 

 

A program processing an array of size 100 took 50 ms to finish and on an array of size 1000 it took 75 

ms to finish. What Big Oh runtime would be most reasonable for the program? (Hint: make a couple 

guesses to the function and see if those guesses are consistent with the run-times listed.) 
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3) (5 pts) ANL (Summations) 

  

What is the simplified closed form of the following summation in terms of n? Please show each step of 

work. (Note: the bounds on the inner summation are NOT a misprint!!!) 

 

∑(∑4𝑏

𝑎

𝑏=𝑎

)

𝑛

𝑎=0
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Section II B 

ALGORITHMS AND ANALYSIS TOOLS  

 

NO books, notes, or calculators may be used,  

and you must work entirely on your own. 

 

Name:     ___________________________________________ 

UCFID:  ___________________________________________ 

NID:       ___________________________________________ 

 

Question # Max Pts Category Score 

1 5 DSN  

2 10 DSN  

3 10 DSN  

TOTAL 25   
  

  

You must do all 3 problems in this section of the exam. 
 

Problems will be graded based on the completeness of the solution steps and not 

graded based on the answer alone. Credit cannot be given unless all work is shown 

and is readable. Be complete, yet concise, and above all be neat. For each coding 

question, assume that all of the necessary includes (stdlib, stdio, math, string) for 

that particular question have been made.      
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1) (5 pts) DSN (Recursive Coding) 

 

Write a recursive function that returns the number of bits set to 1 in the binary representation of its input 

parameter, n. For example numBitsOn(17) should return 2, since 17 in binary is 10001. (Note: In order 

to receive full credit, your function's run time must be O(b), where b is the total number of bits in 

n. Since this isn't the bitwise operator question, you don't HAVE to use bitwise operators for full 

credit, but that's probably the most natural route to the solution.) 
 

int numBitsOn(int n) { 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

} 
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2) (10 pts) DSN (Sorting) 
  

The critical part of the Quick Sort algorithm is the partition. One important part of the partition is the 

selection of the partition element. In general, it's better to have a "middle value" relative to the other 

values in the subarray to be sorted to be chosen as the partition element. One simple strategy to improve 

the probability of a good partition element is to select three items at random from the subarray to be 

sorted and use the middle value of those three as the partition element. In this particular problem, 

complete the function below so that it takes in an array, a low index to the array and a high index to the 

array, designating a subarray, generates three random indexes in between low and high inclusive (let 

these be indexA, indexB and indexC), and the returns the corresponding index (either indexA, indexB or 

indexC) to the middle value of the three designated values array[indexA], array[indexB] or 

array[indexC]. A function randInt(a, b) is provided for you to call, which returns a random integer in 

between a and b, inclusive. (Note: To make the problem a bit easier, there is no need to make sure 

that indexA, indexB and indexC are all distinct.) 
 

// Pre-condition: low and high are valid indexes into array with 

//                high - low > 10 

int getPartitionIndex(int array[], int low, int high) { 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

} 

 

int randInt(int a, int b) { 

    int base = ((rand()%32768)<<15) + (rand()%32768); 

    return a + base%(b-a+1); 

} 
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3) (10 pts) DSN (Backtracking) 

 

Consider printing out all strings of x A's and y B's, where x ≥ y-1 such that no two consecutive letters 

are Bs, in alphabetical order. For example, if x = 5 and y = 3, one of the valid strings printed would be 

AABABABA. One way to solve this problem would be to use backtracking, where a string is built up, 

letter by letter (first trying A, then trying B in the current slot). Complete the code below to implement 

this backtracking solution idea. The correct condition for when you can place As is already in the 

code. (Hint: You can only place Bs if there are Bs left to place. If there are Bs left, then you must ensure 

that if there is a previous letter, it is not a B.) 

 
#include <stdio.h> 

#include <stdlib.h> 

 

void printAll(char buffer[], int k, int a, int b); 

void printWrapper(int x, int y); 

 

// Prints all strings with exactly x A's and y B's in alphabetical 

// order. 

void printWrapper(int x, int y) { 

    char* buffer = malloc(sizeof(char)*(x+y+1)); 

    buffer[x+y] = '\0'; 

    printAll(buffer, 0, x, y); 

    free(buffer); 

} 

 

void printAll(char buffer[], int k, int x, int y) { 

 

    if (x == 0 && y == 0) { 

        printf("%s\n", buffer); 

        return; 

    } 

 

    if (x > y-1) { 

        buffer[k] = 'A' ; 

 

        printAll(buffer, ______ , ______ , ______ ); 

    } 

 

    if ( _______ && ( _______ || (_______ && __________________) ) ){ 

 

        buffer[k] = 'B' ; 

 

        printAll(buffer, ______ , ______ , ______ ); 

    } 

} 


