
Page 1 of 4

Computer Science Foundation Exam

August 26, 2017

Section I A

DATA STRUCTURES

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: ___

UCFID: ___

NID: ___

Question # Max Pts Category Passing Score

1 5 DSN 3

2 10 DSN 7

3 10 ALG 7

TOTAL 25 17

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Fall 2017 Data Structures Exam, Part A

Page 2 of 4

1) (5 pts) DSN (Dynamic Memory Management in C)

There is something terribly wrong with the code given below: it has two memory leaks. After carefully

inspecting the code, answer the questions below.

1: int main(void)

2: {

3: char *str1 = malloc(sizeof(char) * 16);

4: char *str2 = malloc(sizeof(char) * 16);

5:

6: str1[0] = 'p';

7: str1[1] = 'a';

8: str1[2] = 's';

9: str1[3] = 's';

10: str1[4] = ',';

11: str1[5] = '\0';

12:

13: printf("%s ", str1);

14: str2 = str1;

15: printf("%s ", str2);

16: str2 = NULL;

17: strcpy(str1, "pass the exam!");

18: printf("%s\n", str1);

19:

20: free(str1);

21: free(str2);

22:

23: return 0;

24: }

(a) (3 pts) Draw a picture that indicates the relevant state of memory after line 14 has completed. (Draw

a rectangular box to indicate dynamically allocated memory.)

(b) (1 pt) Explain why line 14 causes a memory leak.

(c) (1 pt) Why is it possible for the code to crash on line 21?

Fall 2017 Data Structures Exam, Part A

Page 3 of 4

2) (10 pts) DSN (Linked Lists)

Write a recursive function that takes in the head of a linked list and frees all dynamically allocated

memory associated with that list. You may assume that all the nodes in any linked list passed to your

function (including the head node) have been dynamically allocated. It’s possible that your function

might receive an empty linked list (i.e., a NULL pointer), and you should handle that case appropriately.

Note that your function must be recursive in order to be eligible for credit.

The linked list node struct and the function signature are as follows:

typedef struct node {

struct node *next;

int data;

} node;

void destroy_list(node *head) {

}

Fall 2017 Data Structures Exam, Part A

Page 4 of 4

3) (10 pts) ALG (Stacks) Suppose we pass the string “cupcake” to the following function. What will the

function’s output be, and what will the stacks s1 and s2 look like when the function terminates? You

may assume the stack functions are written correctly and that the stacks are designed for holding

characters.

void string_shenanigans(char *str)

{

 int i, len = strlen(str);

 char *new_string = malloc(sizeof(char) * (len + 1));

 Stack s1, s2;

 init(&s1); // initializes stack s1 to be empty

 init(&s2); // initializes stack s2 to be empty

 for (i = 0; i < len; i++) {

 push(&s1, str[i]); // this pushes onto stack s1

 push(&s2, str[i]); // this pushes onto stack s2

 }

 for (i = 0; i < len; i++) {

 if (i % 2 == 0) {

 // Note: pop() returns the character being removed from the stack.

 if (!isEmpty(&s1))

 new_string[i] = pop(&s1);

 if (!isEmpty(&s1))

 push(&s2, pop(&s1));

 }

 else {

 pop(&s2);

 new_string[i] = pop(&s2);

 }

 }

 new_string[len] = '\0';

 printf("%s\n", new_string);

 free(new_string);

}

printf() output final contents of s1

(please label ‘top’ for clarity)

final contents of s2

(please label ‘top’ for clarity)

Page 1 of 4

Computer Science Foundation Exam

August 26, 2017

Section I B

DATA STRUCTURES

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: ___

UCFID: ___

NID: ___

Question # Max Pts Category Passing Score

1 10 ALG 7

2 5 ALG 3

3 10 DSN 7

TOTAL 25 17

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Fall 2017 Data Structures Exam, Part B

Page 2 of 4

1) (10 pts) ALG (Binary Search Trees)

(a) (6 pts) Following are three traversals produced by the exact same binary search tree. Using

your powers of inference, determine which one is which. (Fill in each blank with “in-order,”

“pre-order,” “post-order.”) (Note: All sets of answers which don't contain each traversal

exactly once will automatically be awarded 0 points.)

___________________ traversal: 18 14 12 9 31 24 19 22 23 36

___________________ traversal: 9 12 14 23 22 19 24 36 31 18

___________________ traversal: 9 12 14 18 19 22 23 24 31 36

(b) (1 pt) What value must be at the root of the BST that produced the traversals listed in part (a)?

(c) (1 pt) Using big-oh notation, what is the best-case runtime for searching for a particular value in

a BST with n nodes?

(d) (1 pt) Using big-oh notation, what is the worst-case runtime for searching for a particular value

in a binary tree (a regular old binary tree, not necessarily a BST) with n nodes?

(e) (1 pt) Using big-oh notation, what is the worst-case runtime for searching for a particular value

in a BST with n nodes?

Fall 2017 Data Structures Exam, Part B

Page 3 of 4

2) (5 pts) ALG (Hash Tables)

Use the following hash function to insert the given elements into the hash table below. Use quadratic

probing to resolve any collisions. You may assume that the correct table size (in this case, 10) is always

passed to the function with the key that is being hashed.

int hash(int key, int table_size)

{

 int a = (key % 100) / 10;

 int b = key % 10;

 return (a + b) % table_size;

}

Keys to insert (one by one, in the following order): 2555, 1523, 5893, 800, 956

0 1 2 3 4 5 6 7 8 9

Fall 2017 Data Structures Exam, Part B

Page 4 of 4

3) (10 pts) DSN (Tries)

Write a recursive function that takes the root of a trie, root, and a single character, alpha, and returns the

number of strings in the trie that contain that letter. You may assume that letter is a valid lowercase

alphabetic character (‘a’ through ‘z’).

Note that we are not simply counting how many times a particular letter is represented in the trie. For

example, if the trie contains only the strings “apple,” “avocado,” and “persimmon,” then the following

function calls should return the values indicated:

 countStringsWithLetter(root, 'p') = 2

 countStringsWithLetter(root, 'm') = 1

The TrieNode struct and function signature are given below. You may assume that the variable

numwords accurately stores the number of valid words stored (# of nodes within the trie with flag set to

1) in all trie structs.

typedef struct TrieNode {

 struct TrieNode *children[26];

 int numwords;

 int flag; // 1 if the string is in the trie, 0 otherwise

} TrieNode;

int countStringsWithLetter(TrieNode *root, char alpha) {

}

Page 1 of 4

Computer Science Foundation Exam

 August 26, 2017

Section II A

ALGORITHMS AND ANALYSIS TOOLS

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: ___

UCFID: ___

NID: ___

Question # Max Pts Category Passing Score

1 10 ANL 7

2 5 ANL 3

3 10 ANL 7

TOTAL 25 17

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Fall 2017 Algorithms and Analysis Tools Exam, Part A

Page 2 of 4

1) (10 pts) ANL (Algorithm Analysis)

Consider the problem of taking n sorted lists of n integers each, and combining those lists into a single

sorted list. For ease of analysis, assume that n is a perfect power of 2. Here are two potential algorithms

to solve the problem:

Algorithm A: Run the Merge Algorithm, defined between two lists, on lists 1 and 2 to create a single

merged list. Then rerun the algorithm on this merged list and list 3, creating a merged list of all items

from lists 1, 2 and 3. Continue in this fashion, running the Merge Algorithm n-1 times, always between

the currently "growing" list and the next list to be merged into it, until list n is merged in, creating a

single sorted list.

Algorithm B: Pair up the lists into
𝑛

2
 pairs of lists of size n. Run the Merge Algorithm on each of these

pairs. Once this phase finishes, there will be
𝑛

2
 lists with 2n integers. With the new lists, repeat the

process until we are left with a single sorted list.

With sufficient work and proof, determine the Big-Oh run time, in terms of n, of both of these

algorithms. Clearly put a box around your final answer for both algorithms.

Fall 2017 Algorithms and Analysis Tools Exam, Part A

Page 3 of 4

2) (5 pts) ANL (Algorithm Analysis)

An algorithm processing an array of size n runs in 𝑂(𝑛√𝑛) time. For an array of size 10,000 the

algorithm processes the array in 16 ms. How long would it be expected for the algorithm to take when

processing an array of size 160,000? Please express your answer in seconds, writing out exactly three

digits past the decimal.

Fall 2017 Algorithms and Analysis Tools Exam, Part A

Page 4 of 4

3) (10 pts) ANL (Summations and Recurrence Relations)

Let a, b, c, and d, be positive integer constants with a < b. Without using the arithmetic sum formula,

prove that

∑(𝑐𝑖 + 𝑑) =
(𝑐(𝑎 + 𝑏) + 2𝑑)(𝑏 − 𝑎 + 1)

2

𝑏

𝑖=𝑎

Page 1 of 4

Computer Science Foundation Exam

 August 26, 2017

Section II B

ALGORITHMS AND ANALYSIS TOOLS

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: ___

UCFID: ___

NID: ___

Question # Max Pts Category Passing Score

1 10 DSN 7

2 5 ALG 3

3 10 DSN 7

TOTAL 25 17

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat.

Fall 2017 Algorithms and Analysis Tools Exam, Part B

Page 2 of 4

1) (10 pts) DSN (Recursive Coding)

Define the weighted sum of an integer array a[0], a[1], ..., a[n-1] to be ∑ (𝑖𝑎[𝑖 − 1])𝑛
𝑖=1 . For example, the

weighted sum of the array [7, 5, 8] would be 1 × 7 + 2 × 5 + 3 × 8 = 41. Write a recursive function

that takes in an array numbers and its length n, and returns its weighted sum. You may assume that

there will be no issues with integer overflow.

int weightedSum(int numbers[], int n) {

}

Fall 2017 Algorithms and Analysis Tools Exam, Part B

Page 3 of 4

2) (5 pts) ALG (Sorting)

Show the contents of the following array after each iteration of Insertion Sort. The result after the last

iteration has been included. (Note: due to the nature of this question, relatively little partial credit will be

awarded for incorrect answers.)

index 0 1 2 3 4 5 6

Initial 17 22 16 5 18 14 2

1st iter

2nd iter

3rd iter

4th iter

5th iter

6th iter 2 5 14 16 17 18 22

Fall 2017 Algorithms and Analysis Tools Exam, Part B

Page 4 of 4

3) (10 pts) DSN (Bitwise operators)

Two useful utility functions when dealing with integers in their binary representation are

(a) int lowestOneBit(int n) - returns the value of the lowest bit set to 1 in the binary

representation of n. (eg. lowestOneBit(12)returns 4, lowestOneBit(80)returns 16.)

(b) int highestOneBit(int n) - returns the value of the highest bit set to 1 in the binary

representation of n. (eg. highestOneBit(12)returns 8, highestOneBit(80)returns 64.) Note:

You may assume that the input is less than 109. The largest positive bit value in an integer is equal

to 230 > 109.

The pre-condition for the first function is that n must be a positive integer. The pre-condition for the

second function is that n must be a positive integer less than 109. Write both of these functions in the

space below. To earn full credit, you must use bitwise operators when appropriate. (Namely, there are

ways to solve this question without using bitwise operators, but these solutions will NOT receive full

credit.)

int lowestOneBit(int n) {

}

int highestOnebit(int n) {

}

