
Page 1 of 4

Computer Science Foundation Exam

 December 16, 2016

Section I A

DATA STRUCTURES

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: ___

UCFID: ___

NID:

Question # Max Pts Category Passing Score

1 10 DSN 7

2 5 ALG 3

3 10 ALG 7

TOTAL 25 17

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Fall 2016 Data Structures Exam, Part A

Page 2 of 4

1) (10 pts) DSN (Dynamic Memory Management in C)

Consider the following struct, which contains a string and its length in one nice, neat package:

typedef struct smart_string {

 char *word;

 int length;

} smart_string;

Write a function that takes a string as its input, creates a new smart_string struct, and stores a new copy

of that string in the word field of the struct and the length of that string in the length member of the

struct. The function should then return a pointer to that new smart_string struct. Use dynamic memory

management as necessary. The function signature is:

smart_string *create_smart_string(char *str) {

}

Now write a function that takes a smart_string pointer (which might be NULL) as its only argument,

frees all dynamically allocated memory associated with that struct, and returns NULL when it’s finished.

smart_string *erase_smart_string(smart_string *s) {

}

Fall 2016 Data Structures Exam, Part A

Page 3 of 4

2) (5 pts) DSN (Linked Lists)

Consider the following function, which takes the head of a linked list as its only input parameter:

node *funky(node *head) {

 if (head == NULL)

 return head;

 if (head->next != NULL && (head->next->data % 2) == 0) {

 head->next = yknuf(head->next->next, head->next);

 head = funky(head->next->next);

 }

 else if (head->next != NULL)

 head->next = funky(head->next);

 return head;

}

node *yknuf(node *n1, node *n2) {

 n2->next = n1->next->next;

 n1->next = n2;

 return n1;

}

Suppose someone passes the head of the following linked list to the funky() function:

 +----+ +----+ +----+ +----+ +----+ +----+

 | 31 |-->| 27 |-->| 84 |-->| 50 |-->| 40 |-->| 32 |-->NULL

 +----+ +----+ +----+ +----+ +----+ +----+

 ^ head

The function call is: funky(head);

This program is going to crash spectacularly, but before it does, it will change the structure of the linked

list a bit. Trace through the function call(s) and draw a new diagram that shows how the links in this

linked list will be arranged at the moment when the program crashes. (In particular, show where the next

pointer for each node except the one storing 32 will point.)

 +----+ +----+ +----+ +----+ +----+ +----+

 | 31 | | 27 | | 84 | | 50 | | 40 | | 32 |

 +----+ +----+ +----+ +----+ +----+ +----+

 ^ head

Fall 2016 Data Structures Exam, Part A

Page 4 of 4

3) (10 pts) DSN (Stacks: Infix to Postfix Conversion)

Convert the following from an infix expression to a postfix expression. Show the state of the operator stack at

each of the indicated points (A, B, and C):

14 + 18 * 9 – 3 + (4 – 8) * (9 – 6) / 2

 ^ ^ ^

 A B C

A B C

Give the final postfix expression here:

What is the final value of this postfix expression?

Page 1 of 4

Computer Science Foundation Exam

 December 16, 2016

Section I B

DATA STRUCTURES

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: ___

UCFID: ___

NID:

Question # Max Pts Category Passing Score

1 10 DSN 7

2 5 ALG 3

3 10 DSN 7

TOTAL 25 17

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Fall 2016 Data Structures Exam, Part B

Page 2 of 4

1) (10 pts) DSN (Binary Trees)

A binary search tree is considered “lopsided” if the root’s left subtree height and right subtree height

differ by more than one (i.e., the left subtree is more than one level deeper or shallower than the right

subtree). This is different from the definition of “balanced” that comes up in relation to AVL trees,

because the “lopsided” property only applies to the root of the tree – not every single node in the tree.

Write a function, isLopsided(), that takes the root of a binary search tree and returns 1 if the tree is

lopsided, and 0 otherwise. You may write helper functions as you see fit. The node struct and function

signature are as follows:

typedef struct node {

 struct node *left, *right;

 int data;

} node;

int isLopsided(node *root) {

}

Fall 2016 Data Structures Exam, Part B

Page 3 of 4

2) (5 pts) ALG (Advanced Data Structures: Binary Heaps)

(a) (2 pts) Is the following tree a valid minheap? If so, give an array representation of this minheap. If

not, explain why it’s not a minheap.

 3

 / \

 93 44

 / \

 207 99

(b) (3 pts) Insert the value 3 into the following minheap. Clearly show each step of the process

 2

 / \

 28 48

 / \ / \

 48 68 78 99

Fall 2016 Data Structures Exam, Part B

Page 4 of 4

3) (10 pts) DSN (Advanced Tree Structures: Tries)

Write a recursive function that takes the root of a trie and counts how many odd-lengthed strings there

are in the trie. For example, if the trie contains the empty string (“”), “bananas”, “avocados”, and

“randomness”, the function should return 1, because only one of those strings has a length that is odd

(“bananas”).

We will make our initial call to your function like so: countOddStrings(root, 0);

Part of the fun in this problem is figuring out what to do with that second parameter.

Please do NOT write any helper functions. Restrict yourself to the function whose signature is given

below.

typedef struct TrieNode {

 struct TrieNode *children[26];

 int flag; // 1 if the string is in the trie, 0 otherwise

} TrieNode;

int countOddStrings(TrieNode *root, int k) {

}

Page 1 of 4

Computer Science Foundation Exam

 December 16, 2016

Section II A

ALGORITHMS AND ANALYSIS TOOLS

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: ___

UCFID: ___

NID:

Question # Max Pts Category Passing Score

1 10 ANL 7

2 5 ANL 3

3 10 ANL 7

TOTAL 25 17

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Fall 2016 Algorithms and Analysis Tools Exam, Part A

Page 2 of 4

1) (10 pts) ALG (Algorithm Analysis)

Consider the following function:

int* makeArray(int n) {

 int* array = calloc(n, sizeof(int));

 int i, j;

 for (i=0; i<n; i++)

 for (j=i; j<n; j = j+i+1)

 array[j]++;

 return array;

}

(a) (1 pt) Assuming that the function is called with a value of n = 12 or greater, what will array[11] store

when the array is returned from the function?

(b) (3 pts) In general, what will array[k] store when the function completes, assuming the function was

called with an input value of k+1 or greater?

(c) (2 pts) Write a summation that provides a tight upper bound on the number of times the line of code

array[j]++ runs when the function is called with the input value n.

(d) (4 pts) Utilizing the fact that ∑
1

𝑖
= 𝑂(𝑙𝑔𝑛)𝑛

𝑖=1 , determine the run time of the function makeArray for

an input of size n. (Note: This run time is equal to the summation from part c.)

Fall 2016 Algorithms and Analysis Tools Exam, Part A

Page 3 of 4

2) (5 pts) ANL (Algorithm Analysis)

An image processing algorithm takes O(n3) time to run to filter an n x n pixel picture. If it takes 8

seconds to process a 1024 x 1024 pixel picture, how long will it take to process a 1536 x 1536 pixel

picture?

Fall 2016 Algorithms and Analysis Tools Exam, Part A

Page 4 of 4

3) (10 pts) ANL (Summations and Recurrence Relations)

(a) (5 pts) Determine the following sum in terms of n: ∑ (3𝑖 − 2)2𝑛−1
𝑖=1 .

(b) (5 pts) Let 𝑇(𝑛) = 3𝑇 (
𝑛

2
) + 𝑛2. In using the iteration technique (3 steps) to solve the recurrence, we

arrive at an equation of the form: 𝑇(𝑛) = 𝐴𝑇 (
𝑛

8
) + 𝐵𝑛2. Find A and B.

Page 1 of 4

Computer Science Foundation Exam

 December 16, 2016

Section II B

ALGORITHMS AND ANALYSIS TOOLS

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: ___

UCFID: ___

NID:

Question # Max Pts Category Passing Score

1 10 DSN 7

2 10 ALG 7

3 5 ALG 3

TOTAL 25 17

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat.

Fall 2016 Algorithms and Analysis Tools Exam, Part B

Page 2 of 4

1) (10 pts) DSN (Recursive Coding)

A derangement is a permutation of the integers 1, 2, 3, ..., n such that for all i, 1 ≤ i ≤ n, the value in the

ith location isn't i. For example, (2, 1, 4, 3) is a derangement of 4 items since the first item isn't 1, the

second item isn't 2, the third item isn't 3 and the fourth item isn't 4. But (3, 1, 5, 4, 2) is NOT a

derangement of 5 items since the 4th item on this list is 4. Complete the code below so that it prints out

all derangements of size n (2 ≤ n ≤ 10), where n is entered by the user.

#include <stdio.h>

#define MAX 10

void printD(int n);

void printDRec(int n, int* perm, int* used, int k);

void print(int* perm, int length);

int main() {

 int n;

 printf("Enter the size of your derangement(2-10).\n");

 scanf("%d", &n);

 printD(n);

 return 0;

}

void printD(int n) {

 int perm[MAX];

 int used[MAX];

 int i;

 for (i=0; i<MAX; i++) used[i] = 0;

 printDRec(___ , __________ , __________ , ______);

}

void printDRec(int n, int* perm, int* used, int k) {

 if (k == n) {

 print(perm, n);

 return;

 }

 int i;

 for (i=0; i<n; i++) {

 if (___) {

 perm[___] = ____ ;

 used[_____] = _____ ;

 printDRec(n, perm, used, k+1);

 used[____] = ____ ;

 }

 }

}

void print(int* perm, int length) {

 int i;

 for (i=0; i<length; i++)

 printf("%d ", perm[i]+1);

 printf("\n");

}

Fall 2016 Algorithms and Analysis Tools Exam, Part B

Page 3 of 4

2) (10 pts) ALG (Sorting)

(a) (6 pts) In quick sort, when running the partition function, the first step is to choose a random

partition element. In some implementations, instead of just choosing a random element, 3 or 5 random

elements are chosen and the median of those elements is then selected as the partition element, as

opposed to making the partition element a single randomly selected item. What is the potential benefit of

using this strategy (median of 3 or median of 5) versus the default strategy of just choosing a single

random element?

(b) (4 pts) The best case run time of an insertion sort of n elements is O(n) and the worst case run time

of an insertion sort is O(n2). Describe how to (a) construct a list of n distinct integers that, when sorted

by insertion sort, gets sorted in the best case run time, and (b) construct a list of n distinct integers that,

when sorted by insertion sort, gets sorted in the worst case run time.

Fall 2016 Algorithms and Analysis Tools Exam, Part B

Page 4 of 4

3) (5 pts) ALG (Bitwise Operators)

What is the output of the following C program?

#include <stdio.h>

int main() {

 int x = 13, y = 27, z = 74;

 printf("x^y = %d\n", x^y);

 printf("x&z = %d\n", x&z);

 printf("x&(y|z) = %d\n", x&(y|z));

 printf("x|y|z = %d\n", x|y|z);

 int i, sum = 0;

 for (i=0; i<10; i++) {

 if ((x & (1<<i)) != 0) sum++;

 if ((y & (1<<i)) != 0) sum++;

 if ((z & (1<<i)) != 0) sum++;

 }

 printf("sum = %d\n", sum);

 return 0;

}

x^y = _____

x&z = _____

x&(y|z) = _____

x|y|z = _____

sum = _____

