
Page 1 of 6 

 

Computer Science Foundation Exam 

December 18, 2015 

Section I A 

COMPUTER SCIENCE  

NO books, notes, or calculators may be used,  

and you must work entirely on your own. 

 

SOLUTION 

Question # Max Pts Category Passing Score 

1 10 DSN 7  

2 10 ANL 7  

3 10 ALG 7  

4 10 ALG 7  

5 10 ALG 7  

TOTAL 50    
 

 

You must do all 5 problems in this section of the exam. 
 

Problems will be graded based on the completeness of the solution steps and 

not graded based on the answer alone. Credit cannot be given unless all work 

is shown and is readable. Be complete, yet concise, and above all be neat.       
 

 



Fall 2015 Computer Science Exam, Part A 

Page 2 of 6 

 

1) (10 pts) DSN (Recursive Functions)  

 

Write a recursive function that takes the root of a ternary tree (a tree where each node has at 

most three children) and determines whether all the nodes that have a middle child also have 

both a left child and a right child. If so, return 1. Otherwise, return 0. Note: If the function with a 

null input, the output should be 1.  

 

The node struct and functional prototype for this question are: 

 
typedef struct node 

{ 

   char *data; 

   struct node *left, *middle, *right; 

} node; 

 

int hasProperty(node *root) 

{ 

  if (root == NULL) 

     return 1; 

 

  else if (root->middle == NULL) 

     return hasProperty(root->left) && hasProperty(root->right); 

 

  else if (root->left == NULL || root->right == NULL) 

     return 0; 

 

  else 

     return hasProperty(root->left) && 

            hasProperty(root->right) && 

            hasProperty(root->middle); 

} 

 

Grading:  

 

2 pts for root == NULL base case,  

3 pts for handling root->middle == NULL case,  

2 pts for handling case where exactly middle isn't NULL but left or right is 

3 pts for handing case where none are NULL 
 

 

 

 

 

 

 

 

 

 



Fall 2015 Computer Science Exam, Part A 

Page 3 of 6 

 

2) (10 pts) ANL (Summations and Algorithm Analysis) 

 

Give the big-oh runtimes for each of the following functions in terms of n and/or k (where k is 

the length of string s), given that strlen(s) is an O(k) function and toupper(c) is an O(1) function. 

You may assume that s is non-NULL and contains at least one character (so, it shouldn’t cause 

any of the following functions to crash). 
 

void uppercase(char *s) 

{ 

   int i; 

   for (i = 0; i < strlen(s); i++)   

      s[i] = toupper(i); 

} 

         uppercase run time: 𝑶(𝒌𝟐) 
void uppercase_remix(char *s) 

{ 

   int i, length = strlen(s);    

   for (i = 0; i < length; i++) 

      s[i] = toupper(i); 

} 

        uppercase_remix run time: 𝑶(𝒌) 
void uppercase_unreliable(char *s){ 

   int i, j = strlen(s) – 1, m;   

   while (i <= j) 

   { 

      m = i + (j – i) / 2; 

      if (rand() % 2 == 0) 

      { 

         s[i] = toupper(s[i]); 

         i = m + 1; 

      } 

      else 

      { 

         s[j] = toupper(s[j]); 

         j = m – 1; 

      } 

   } 

} 

     uppercase_unreliable run time: 𝑶(𝒌) + 𝑶(𝐥𝐨𝐠𝒌) = 𝑶(𝒌) 
void mad_scramble(char *s, int n){        

   int i; 

   for (i = 0; i < n; i++) 

      s[strlen(s) – 1] = rand() % 25 + 'a'; 

}        mad_scramble run time: 𝑶(𝒏𝒌) 
 

Grading: 3 pts uppercase, 2 pts uppercase_remix, 3 pts uppercase_unreliable, 2 pts 

mad_scramble, each part is all or nothing. 



Fall 2015 Computer Science Exam, Part A 

Page 4 of 6 

 

3) (10 pts) ALG (Stacks) 

 

Use a stack to convert the following infix expression to a postfix expression. Please show the 

state of the stack at the exact point in time when the algorithm reaches the marked locations (A, 

B, C, and D) while processing the expression. 

  

 
                 A            B            C                  D 

8  *  3  /  2  +   9  –  6  +   (  3  –  (   8  *  2  )  +  7  ) 

 

 

       

       

       

       

       

       

    (   

    -  + 

    (  ( 

+  +  +  + 
A  B  C  D 

 

 

Equivalent Postfix Expression: 

 
8  3  *  2  /  9  +  6  -  3  8  2  *  -  7  +  + 

______________________________________________________________________________ 

  

 

Grading: 1 pt for each stack, 6 pts for the expression (take off 1 pt per error in the 

expression, capping at 6) 



Fall 2015 Computer Science Exam, Part A 

Page 5 of 6 

 

4) (10 pts) ALG (Binary Search Trees and Hash Tables) 

  

a) (8 pts) Draw a single binary search tree that gives rise to all three of the following tree 

traversals: 

 

Inorder:  4  7  8  10  27  30  44  56 

 

 Preorder:  4  10  7  8  44  30  27  56 

 

 Postorder:  8  7  27  30  56  44  10  4 

 

 
                4 

                 \ 

                 10 

               /    \ 

              7      44 

               \    /  \ 

                8  30  56 

                  /       

                 27        

 

Grading: 8 pts total, 1 pt per node placement, try to adjust for errors so that you don't take 

off multiple points for one incorrect node; namely, grade relative to an initial error they 

made. 
 

 

 

 

 

 

 

 

 

 

 

 

 

b) (2 pts) If we insert an element into a hash table using quadratic probing to resolve 

collisions, what two conditions must be met to ensure that if an open spot exists in our 

hash table, we will find that spot (rather than getting stuck in an infinite loop)? 

 

1. The table size must be a prime number. 

 

2. The table must be at least half empty. 

 

Grading: 1 pt each  



Fall 2015 Computer Science Exam, Part A 

Page 6 of 6 

 

5) (10 pts) ALG (Base Conversion) 

 

Write a function that takes a string str and an integer b (where 2 ≤ 𝑏 ≤ 10), and returns 1 if str 

represents an integer in base b that is a perfect power of b. For example: 

 
 isPower("323", 4);     // Return 0. 3234 = 5910, which is not a power of 4 

 isPower("27", 3);      // Return 0. 27 is not a valid base 3 integer. 

 isPower("plum", 8);    // Return 0. plum is not a valid base 8 integer. 

 isPower("1000", 10);   // Return 1. 100010 is a power of 10 (103) 

 isPower("000001", 2);  // Return 1. 12 = 110, which is a power of 2 (20) 

 

Notes: You may assume b is always within the range specified above. Your function must return 

0 if str is NULL or the empty string. Strings may be padded on the left with any number of zeros. 

 
// You must use this function signature. You may write helper functions as 

// needed: 

int isPower(char *str, int b); 

 

int charToInt(char c) { return c – '0'; } 

 

int isPower(char *str, int b) 

{ 

   int i, length, c, flag = 0; 

 

   if (str == NULL || str[0] == '\0') 

      return 0; 

 

   for (i = 0; i < strlen(str); i++) 

   { 

      // Convert this character to an integer. 

      c = charToInt(str[i]); 

 

      // If this is not even a valid digit in base b, return 0. 

      if (c > b – 1 || c < 0) 

         return 0; 

 

      // Key insight: For this to be a perfect power of b, we must 

      // have '1' followed by '0''s only.  

      if (c == 1) 

      { 

         if (flag > 0)  // If we have seen more than one '1', it's over. 

            return 0; 

         flag = 1; 

      } 

      // Can't have anything but 0's and 1's. 

      else if (c != 0) 

      { 

         return 0; 

      } 

   } 

   return flag; 

} 

 

Grading: 4 pts - for taking care of invalid cases, 1 pt - returns 1 or 0 for all cases, 2 pts - rejects strings that 

have anything but 0 or 1, 2 pts - rejects any string with > 1 non-zero char, 1 pt - accepts correct strings 



Page 1 of 6 

 

  

Computer Science Foundation Exam 

 December 18, 2015 

Section I B 

COMPUTER SCIENCE  

NO books, notes, or calculators may be used,  

and you must work entirely on your own. 

 

SOLUTION 
 

 

Question # Max Pts Category Passing Score 

1 10 ANL 7  

2 10 ANL 7  

3 10 DSN 7  

4 10 DSN 7  

5 10 ALG 7  

TOTAL 50  35  
  

  

You must do all 5 problems in this section of the exam. 
 

Problems will be graded based on the completeness of the solution steps and not 

graded based on the answer alone. Credit cannot be given unless all work is shown 

and is readable. Be complete, yet concise, and above all be neat.       

 
 

 

 

 



Fall 2015 Computer Science Exam, Part B  

 

Page 2 of 6 

 

1) (10pts) ANL (Algorithm Analysis)   

 

Consider the recursive function sum shown below: 
  

double sum(int* array, int low, int high){ 

    if (low == high) 

        return array[low]; 

    int mid = (low+high)/2, left = 0, right = 0, i; 

    for (i=low; i<=mid; i++) left += array[i]; 

    for (i=mid+1; i<=high; i++) right += array[i]; 

    if (left > right) return left + sum(array, low, mid); 

    return right + sum(array, mid+1, high); 

} 

 

(a) (3 pts) Let T(n) represent the run time of the function call sum(array, 0, n-1), where array is 

an integer array of size n. Write a recurrence relation that T(n) satisfies. 

     𝑇(𝑛) = 𝑇 (
𝑛

2
) + 𝑂(𝑛), 𝑇(1) = 1 

Grading: 2 pts T(n/2), 1 pt O(n). 

 

(b) (7 pts) Using the iteration method, determine a closed-form solution (Big-Oh bound) for T(n). 

Assume T(1) = O(1). 

 

𝑇(𝑛) = 𝑇 (
𝑛

2
) + 𝑐𝑛 

𝑇(𝑛) = 𝑇 (
𝑛

4
) +

𝑐𝑛

2
+ 𝑐𝑛 

𝑇(𝑛) = 𝑇 (
𝑛

4
) +

3𝑐𝑛

2
 

𝑇(𝑛) = 𝑇 (
𝑛

8
) +

𝑐𝑛

4
+

3𝑐𝑛

2
 

𝑇(𝑛) = 𝑇 (
𝑛

8
) +

7𝑐𝑛

4
 

 

After k steps, we have 

𝑇(𝑛) = 𝑇 (
𝑛

2𝑘
) +

(2𝑘 − 1)𝑐𝑛

2𝑘−1
 

 

Plugging in 
𝑛

2𝑘 = 1, we have 

𝑇(𝑛) = 𝑇(1) +
(𝑛 − 1)𝑐𝑛

𝑛
2

 

 

𝑇(𝑛) = 1 + 2𝑐(𝑛 − 1) 

 

𝑇(𝑛) = 𝑂(𝑛) 
 

Grading: 1 pt each iteration (3 pts total), 2 pts general form with k, 2 pts finishing problem. Note 

in place of cn students can write O(n) or even n, with no penalty. 



Fall 2015 Computer Science Exam, Part B  

 

Page 3 of 6 

 

 

2) (10 pts) ANL (Algorithm Analysis) 
  

(a) (5 pts) A matrix factorization algorithm that is run on a input matrix of size n x n, runs in O(n3) time. 

If the algorithm takes 54 seconds to run for an input of size 3000 x 3000, how long will it take to run on 

an input of size 1000 x 1000?  

 

Let T(n) be the run-time of the algorithm on a matrix input of size n x n. We have: 

 

𝑇(3000) = 𝑐30003 = 54 𝑠𝑒𝑐 

𝑐 =
54

27 × 109
𝑠𝑒𝑐 =

2

109
𝑠𝑒𝑐 

 

We desire to find T(1000): 

𝑇(1000) = 𝑐(10003) =
2 𝑠𝑒𝑐

109
× 109 = 2 𝑠𝑒𝑐 

 

Grading: 2 pts solving for c, 2 pts plugging in c, 1 pt for simplifying to 2 sec. Ratio method is valid 

as well, map points accordingly. 

 

 

(b) (5 pts) A string algorithm with inputs of lengths n and m runs in O(n2m) time. If the algorithm takes 

2 seconds to run on an input with n = 1000 and m = 500, how long will the algorithm take to execute on 

an input with n = 250 and m = 1000? 
 

Let T(n, m) be the run-time of the algorithm on strings inputs with lengths n and m. We have: 

 

𝑇(1000, 500) = 𝑐(10002)(500) = 2 𝑠𝑒𝑐 

𝑐 =
2 𝑠𝑒𝑐

5 × 108
 

 

We desire to find T(250, 1000): 

 

𝑇(250, 1000) = 𝑐(2502)(1000) =
2 𝑠𝑒𝑐

5 × 108
× 625 × 105 =

250

1000
𝑠𝑒𝑐 = .25 𝑠𝑒𝑐 

 

Grading: 2 pts solving for c, 3 pts obtaining final answer. Ratio method is valid as well, map points 

accordingly. 



Fall 2015 Computer Science Exam, Part B  

 

Page 4 of 6 

 

3) (10 pts) DSN (Linked Lists) 

 

Write a recursive function, aboveThreshold, that takes in a pointer to the front of a linked list 

storing integers, and an integer, limit, and returns the number of values stored in the linked list that 

are strictly greater than limit. For example, if the function was called on a list storing 3, 8, 8, 6, 7, 5, 

7, 9 and limit equaled 6, then the function should return 5, since the 2nd, 3rd, 5th, 7th and 8th values 

in the list are strictly greater than 6. (Notice that we don't count the 4th element.) 

 

Use the struct definition provided below. 
 

typedef struct node { 

    int value; 

    struct node* next; 

} node; 

 

int aboveThreshold(node* front, int limit) { 

 

    if (front == NULL) return 0; 

 

    int cnt = 0; 

    if (front->data > limit) cnt = 1; 

 

    return cnt + aboveThreshold(front->next, limit); 

} 

 

Grading conceptually: 3 pts for the base case, 3 pts for adding 1 in the case that the first item is 

greater than the limit, 3 pts for adding in the appropriate recursive call, 1 pt for returning. Max of 

3 pts for an iterative solution. 

  



Fall 2015 Computer Science Exam, Part B  

 

Page 5 of 6 

 

4) (10 pts) DSN (Binary Trees) 

 

We define the offcenter value for each node in a binary tree as being the absolute value of the difference 

between the height of its left subtree and the height of its right subtree. For example, for an AVL tree, 

each node has an offcenter value of 0 or 1. Also, note that we define the offcenter value of a null node to 

be 0. Write a function, maxOffCenterValue that computes the maximum offcenter value of any 

node in a tree pointed to by root. To make your task easier, assume that the height of each node is stored 

in the corresponding struct for that node in the component height. 

 

Using the struct definition given below, complete the function in the space provided. 

 
#include <math.h> 

 
typedef struct treenode {  

    int value; 

    int height; 

    struct treenode *left;  

    struct treenode *right;  

} treenode; 

 

int max(int a, int b) { 

    if (a > b) return a; 

    return b; 

} 

 

int maxOffCenterValue(treenode* root) { 

 

    if (root == NULL) return 0; 

    if (root->left == NULL && root->right == NULL) return 0; 

    if (root->left == NULL || root->right == NULL)  

        return root->height; 

     

    int lVal = maxOffCenterValue(root->left); 

    int rVal = maxOffCenterValue(root->right); 

    int res = max(lVal, rVal); 

 

    int cur = abs(root->left->height - root->right->height); 

    return max(res, cur); 

} 

 

Grading: 1 pt NULL case, 1 pt 1 node case, 2 pts root has one child, 1 pt for left rec call, 1 pt for 

right rec call, 2 pts for current node calculation, 2 pts for getting max of all three. 
 

 

     

 

  



Fall 2015 Computer Science Exam, Part B  

 

Page 6 of 6 

 

5) (10 pts) ALG (Sorting)  

 

Write the code for any one of the following O(n2) sorts: Bubble Sort, Insertion Sort, Selection Sort in a 

single function below. Your code should sort the array from smallest to largest. (Namely, after your 

code finishes array[i] ≤ array[i+1] for all i, 0 ≤ i < length-1.) Please provide the name of the sort you are 

choosing to implement and fill in the function prototype below. 

 
void bubblesort(int* array, int length) { 

    int i,j; 

    for (i=length-1; i>0; i--) { 

        for (j=0; j<i; j++) { 

            if (array[j] > array[j+1]) { 

                int temp = array[j]; 

                array[j] = array[j+1]; 

                array[j+1] = temp; 

            } 

        } 

    } 

} 

 

void insertionsort(int* array, int length) { 

    int i,j; 

    for (i=1; i<length; i++) { 

        j = i; 

        while (j>0 && array[j] < array[j-1]) { 

            int temp = array[j]; 

            array[j] = array[j-1]; 

            array[j-1] = temp; 

            j--; 

        } 

    } 

} 

 

void selectionsort(int* array, int length) { 

    int i,j; 

    for (i=length-1; i>=0; i--) { 

        int bestJ = 0;         

        for (j=1; j<=i; j++) { 

            if (array[j] > array[bestJ])  

                bestJ = j; 

        } 

        int temp = array[i]; 

        array[i] = array[bestJ]; 

        array[bestJ] = temp; 

    } 

} 

Grading: 3 pts outer loop structure, 4 pts inner loop structure, 3 pts appropriate swapping, 1 pt 

off for sorting properly but using the wrong name for the sort or writing an extra function. 



Page 1 of 5 

 

 

Computer Science Foundation Exam 

 
December 18, 2015 

 

Section II A 

DISCRETE STRUCTURES 

NO books, notes, or calculators may be used,  

and you must work entirely on your own. 
 

SOLUTION 

Question Max Pts Category Passing Score 

1 15 PRF (Induction) 10  

2 15 PRF (Logic) 10  

3 10 PRF (Sets) 6  

4 10 NTH (Number Theory) 6  

ALL 50  32  

 

 

You must do all 4 problems in this section of the exam. 
 

Problems will be graded based on the completeness of the solution steps and not 

graded based on the answer alone. Credit cannot be given unless all work is 

shown and is readable. Be complete, yet concise, and above all be neat.    

 



Fall 2015 Discrete Structures Exam, Part A 

Page 2 of 5 

 

1) (15 pts) PRF (Induction)  

 

Use mathematical induction to prove that, for every positive integer 𝑛, 

 

5 | (8𝑛 − 3𝑛) 
 

Base Case (n = 1): 

81 − 31 = 5, which is divisible by 5, so the base case holds. (Grading: 2 pts) 

 

Inductive Hypothesis: 

Assume for some arbitrary positive integer k, that 5 | (8𝑘 − 3𝑘). That is to say, there exists 

some integer 𝑝 such that 8𝑘 − 3𝑘 = 5𝑝. (Grading: 2 pts) 

 

Inductive Step: 

We want to show that 5 | (8𝑘+1 − 3𝑘+1). In other words, show that 8𝑘+1 − 3𝑘+1 can be written 

as 5𝑞, for some integer 𝑞. (Grading: 2 pts) 

 

8𝑘+1 − 3𝑘+1 = (8)8𝑘 − (3)3𝑘 (Grading: 2 pts) 

 = (5 + 3)8𝑘 − (3)3𝑘 (Grading: 2 pts) 

 = (5)8𝑘 + (3)8𝑘 − (3)3𝑘 (Grading: 1 pts) 

 = (5)8𝑘 + (3)(8𝑘 − 3𝑘) (Grading: 1 pts) 

 = (5)8𝑘 + (3)(5𝑝) by the inductive hypothesis (Grading: 2 pts) 

 = (5)(8𝑘 + 3𝑝) (Grading: 1 pt) 

 = (5)(𝑞) where 𝑞 = 8𝑘 + 3𝑝, which is an integer, since 

the set of integers is closed under multiplication 

and addition (8𝑘 ∈ ℤ as 𝑘 ∈ ℤ+) 

 

So, 5 | (8𝑘+1 − 3𝑘+1). 

 

Thus, by the principle of mathematical induction, 5 | (8𝑛 − 3𝑛) for all positive integers, n.  ∎ 

  



Fall 2015 Discrete Structures Exam, Part A 

Page 3 of 5 

 

2) (15 pts) PRF (Logic)  

 

Validate the following argument using the laws of logic, substitution rules or rules of inference. 

List the rule used in each step and label the steps used in each derivation. 

 

(¬𝑞 ∨ 𝑛) → 𝑟 

𝑞 

𝑧 → 𝑦 

𝑝 

𝑡 → ¬𝑞 

    ∴ 𝑤 → ((𝑝 ∨ ¬𝑟) ∧ ¬𝑡)                        
   

 

Proof: 

 

1. 𝑡 → ¬𝑞 Premise 

2. 𝑞 → ¬𝑡 Contraposition (and Double Negation) on (2) 

3. 𝑞 Premise 

4. ¬𝑡 Modus Ponens on (2) and (3) 

5. 𝑝 Premise 

6. 𝑝 ∨ ¬𝑟 Disjunctive Amplification on (5) 

7. (𝑝 ∨ ¬𝑟) ∧ ¬𝑡 Rule of Conjunction on (6) and (4) 

8. ¬𝑤 ∨ ((𝑝 ∨ ¬𝑟) ∧ ¬𝑡) Disjunctive Amplification on (7) 

9. 𝑤 → ((𝑝 ∨ ¬𝑟) ∧ ¬𝑡) Definition of Implication (and Double Negation) on (9) 

 

 

Grading: 5 pts for deriving not t, 3 pts for deriving p or not r, 3 pts for deriving (p or not 

r) and not t, 4 pts for deriving the final conclusion, take off a maximum of 4 pts for not 

listing reasons, taking off 1 pt per missing reason or incorrect reason stated  

 

 

 

 

 

 

  



Fall 2015 Discrete Structures Exam, Part A 

Page 4 of 5 

 

3) (10 pts) PRF (Sets)  

 

 

a) Let 𝐶 = {𝑥, 𝑦}. What is 𝐶 × 𝐶? 

 

𝐶 × 𝐶 = {(𝑥, 𝑥), (𝑥, 𝑦), (𝑦, 𝑥), (𝑦, 𝑦)} 

 

 

 

b) Let 𝐷 = {𝑝, 𝑜, 𝑚}. What is 𝒫(𝐷) (the power set of 𝐷)? 

 

𝒫(𝐷) = {∅, {𝑝}, {𝑜}, {𝑚}, {𝑝, 𝑜}, {𝑝, 𝑚}, {𝑜, 𝑚}, {𝑝, 𝑜, 𝑚}} 
 

 

 

c) Let 𝐴 and 𝐵 be finite sets. Then, give the following in terms of |𝐴| and |𝐵|: 
 

| 𝐴 × 𝐵| = |𝐴| ⋅ |𝐵| 
 

| 𝒫(𝐴)| = 2|𝐴| 

 

| 𝒫(𝐴 × 𝐵)| =  2|𝐴|⋅|𝐵| 

 

 

d) Let 𝐴 and 𝐵 be finite sets. Give the following in terms of |𝐴|, |𝐵|, |𝐴 × 𝐵|, and/or 

|𝐴 ∩ 𝐵|. (Do not use |𝐴 ∪ 𝐵| in your answer.) 

 

  |𝒫(𝐴 ∪ 𝐵)| = 2|𝐴|+|𝐵|−|𝐴∩𝐵| 
 

 

 

a) Under what conditions does 𝐴 × 𝐵 equal to 𝐵 × 𝐴? (To receive full credit, your answer 

must cover all possible conditions where this occurs.) 

 

Either A = B, or exactly one of A or B is the empty set. (The cross product of the empty 

set with any non-empty set is simply the empty set.) 

 

(If both A and B are the empty set, then that falls under A = B.) 

 

 

 

Grading for each part: 2 pts if completely correct, 1 pt if portions of the answer are correct, 

0 pts otherwise, total is 10 pts for 5 parts  



Fall 2015 Discrete Structures Exam, Part A 

Page 5 of 5 

 

4) (10 pts) NTH (Number Theory) 

 

Show that for all integers a and b, if 30 | (14𝑎 + 8𝑏), then 30 | (2𝑎 − 46𝑏). 

 

 

There are a few ways to solve this one, but one is to observe that 2𝑎 differs from 30𝑎 by 28𝑎. 

From there, we have: 

 

30 | (14𝑎 + 8𝑏), so 30 | 2(14𝑎 + 8𝑏) = 28𝑎 + 16𝑏. 

 

Clearly, 30 | 30𝑎. Since 30 | 30𝑎 and 30 | (28𝑎 + 16𝑏), 30 | (30𝑎 − (28𝑎 + 16𝑏)) = 2𝑎 −
16𝑏. 

 

Also, 30 | 30𝑏. Since 30 | 30𝑏 and 30 | (2𝑎 − 16𝑏), 30 | (2𝑎 − 16𝑏 − 30𝑏) = 2𝑎 − 46𝑏.   ∎ 

 

 

Grading: 3 pts for trying some multiple of 14a + 8b, 2 pts for trying to add or subtract 

multiples of 30a, 2 pts for trying to add or subtract multiples of 30b, 3 pts for finishing up 

the problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  



Page 1 of 5 

 

 

Computer Science Foundation Exam 

 
December 18, 2015 

 

Section II B 

DISCRETE STRUCTURES 

NO books, notes, or calculators may be used,  

and you must work entirely on your own. 

 

SOLUTION 

Question Max Pts Category Passing Score 

1 15 CTG (Counting) 10  

2 15 PRB (Probability) 10  

3 10 PRF (Functions) 6  

4 10 PRF (Relations) 6  

ALL 50  32  

 

 

You must do all 4 problems in this section of the exam. 
 

Problems will be graded based on the completeness of the solution steps and 

not graded based on the answer alone. Credit cannot be given unless all work 

is shown and is readable. Be complete, yet concise, and above all be neat.    

 



Fall 2015 Discrete Structures Exam, Part B 

Page 2 of 5 

 

1) (15 pts) CTG (Counting)  

 

Please leave your answers in factorials, permutations, combinations and powers. Do not 

calculate out the actual numerical value for any of the questions. Justify your answers. 

 

Consider a string 𝑠 of lowercase latin letters of length 10. 

 

 (a) (5 pts) Suppose we require 𝑠 to have no two consecutive letters that are the same. How 

many such strings 𝑠 exist? 

 

There are 26 ways to place the first character of 𝑠. Each choice after that must be different than 

the previous character, so 259 ways to place remaining characters. Using rule of product, we 

derive 26 ⋅ 259 total ways. 

 

Grading: 2 pts first char, 2 pts other 9 chars, 1 pt mult terms 

 

 

 

(b) (5 pts) Suppose we require 𝑠 to have each consecutive triplet of letters be pairwise distinct. 

How many such strings 𝑠 exist? 

 

There are 26 ways to place the first character. We must differ from the first character with the 

second character, so this choice has 25 ways. The remaining 8 character must differ from the 

previous two characters so there are 248 ways to choose remaining characters. By rule of 

product, we derive 26 ⋅ 25 ⋅ 248 ways. 

 

Grading: 1 pt first char, 1 pt second char, 2 pts other 9 chars, 1 pt mult terms 

 

 

 

(c) (5 pts) Suppose we require 𝑠 to have no two consecutive letters that are the same but 

additionally require that 𝑠 be a palindrome. (A string that reads the same forward or 

backwards.) How many such strings 𝑠 exist? 

 

No two consecutive characters can be equal, but as 𝑠 is an even length palindrome the middle 

two characters must be equal. This we have a contradiction in our requirements, resulting in 0 

ways to form palindromes with the consecutive character requirement. 

 

Grading: full credit for correct answer, 2 pts for answers that count # of arrangements of 

the first five letters, give other partial credit as you deem necessary  



Fall 2015 Discrete Structures Exam, Part B 

Page 3 of 5 

 

2) (15 pts) PRB (Probability) 

 

Suppose we roll a 4 sided die with the numbers [1,4] written on them. After the first die roll we 

roll the die 𝑘 times where 𝑘 is the number on the first die roll. The number of points you score 

is the sum of the face-values on all die rolls (including the first). What is the expected number 

of points you will score? 

 

Let 𝐸𝑟(𝑘) be the expected score if you roll 𝑘 dice. Suppose we have 𝑘 dice. Let 𝑋𝑖 be the 

discrete random variable representing the 𝑖𝑡ℎ die’s score. By linearity of expectations  

𝐸(𝑋1 + 𝑋2 + 𝑋3 + 𝑋4) = 𝐸(𝑋1) + 𝐸(𝑋2) + 𝐸(𝑋3) + 𝐸(𝑋4). As the die doesn’t change we can 

calculate 𝐸(𝑋𝑖) using the standard formula for expected value: 𝐸(𝑋𝑖) = 0.25(1) + 0.25(2) +

0.25(3) + 0.25(4) =
10

4
. Now we can calculate 𝐸𝑟(𝑘) = 𝑘 ⋅

10

4
. (Grading: 5 pts, 1 per term 

and 1 for adding properly) 

 

Let 𝑋 be a discrete random variable representing the expected score total. We can calculate 

𝐸(𝑋) be calculating each expected value after knowing the outcome of the first die. This value 

is 𝐸(𝑋) = 0.25(1 + 𝐸𝑟(1)) + 0.25(2 + 𝐸𝑟(2)) + 0.25(3 + 𝐸𝑟(3)) + 0.25(4 + 𝐸𝑟(4)) 

= 0.25 (10 +
10

4
(1 + 2 + 3 + 4)) = 0.25 (10 (1 +

10

4
)) =

35

4
= 8.75 

 

There also exists a solution using probability trees. (Grading: 10 pts, 2 pts for each case and 

2 pts for adding everything up properly) 

 

Grading Note: Other solutions may exist, please try to award partial credit for 

significantly different approaches as you see fit. 

 

 



Fall 2015 Discrete Structures Exam, Part B 

Page 4 of 5 

 

3) (10 pts) PRF (Functions)  

 

The function 𝐶(𝑛, 𝑘) is known as the choose function.  

Let 𝑋 = {(𝑛, 𝑘)|𝑛 ∈ ℕ ⋀ 𝑘 ∈ ℕ ⋀ 𝑘 ≤ 𝑛}. (Note that ℕ is the non-negative integers.)  

For the purposes of this problem we define the choose function, C, as follows: 

 

𝐶: 𝑋 → ℤ+, 𝐶(𝑛, 𝑘) =
𝑛!

𝑘! (𝑛 − 𝑘)!
 

 

(a) (5 pts) Is 𝐶 injective? Prove or disprove this property. 

 

No! We must show that 𝑓(𝑎) = 𝑓(𝑏) ⇏ 𝑎 = 𝑏. Let 𝑎 = (3,2) and 𝑏 = (3,1). It is clear that 

𝐶(3,2) = 𝐶(3,1): 

𝐶(3,2) =
3!

1! 2!
= 𝐶(3,1) 

So 𝑓(𝑎) = 𝑓(𝑏). Yet (3,2) ≠ (3,1). 

 

Grading: 0 pts for answering yes, 2 pts for answering no, 3 pts for a specific example 

where f(a,b) = f(c, d) but either a ≠ c or b ≠ d. 

 

 

 

 

 

 

(b) (5 pts) Is 𝐶 surjective? Prove or disprove this property. 

 

Yes. To do this we must show that there exists (𝑛, 𝑘) such that 𝐶(𝑛, 𝑘) = 𝑧, 𝑧 ∈ ℤ+  

for all 𝑧 ∈ ℤ+. 

 

Let 𝑧 ∈ ℤ+ arbitrarily. As ℤ+ ⊆ ℕ, find 𝐶(𝑧, 1) =
𝑧!

(𝑧−1)!1!
=

𝑧

1
= 𝑧. 

As we have shown 𝐶(𝑧, 1) = 𝑧, we have found (𝑛, 𝑘) ∈ ℕ2 that hits each element of ℤ+. 

 

QED 
 

Grading: 0 pts for answering no, 2 pts for answering yes, 3 pts for showing input values 

and b such that for an arbitrary positive integer y, f(a, b) = y. You may give partial credit 

on this part as well. 

 

 



Fall 2015 Discrete Structures Exam, Part B 

Page 5 of 5 

 

4) (10 pts) PRF (Relations)  

 

Consider the relation ℛ on ℤ2 where ((𝑎, 𝑏), (𝑐, 𝑑)) ∈ ℛ when 𝑎𝑑 − 𝑏𝑐 ≥ 0. Determine (with 

proof) if ℛ meets or doesn’t meet each of these properties: reflexive, symmetric, anti-

symmetric, transitive. 

 

ℛ is reflexive: Show ((𝑎, 𝑏), (𝑎, 𝑏)) ∈ ℛ. 𝑎𝑏 − 𝑏𝑎 = 0 ≥ 0. Thus ℛ is reflexive. 

 

ℛ is not symmetric: ((3,1), (1,3)) ∈ ℛ as 3 ⋅ 3 − 1 ⋅ 1 = 9 − 1 = 8 ≥ 0, yet  

((1,3), (3,1)) ∉ ℛ as 1 ⋅ 1 − 3 ⋅ 3 = 1 − 9 = −9 < 0. 

 

ℛ is not anti-symmetric: ((1,0), (−1,0)) ∈ ℛ as 1(0) − 0(−1) = 0 − 0 = 0 ≥ 0. 

((−1,0), (1,0)) ∈ ℛ as −1(0) − 0(1) = 0 − 0 = 0 ≥ 0. 

Yet, (1,0) ≠ (−1,0). 

 

ℛ is not transitive:  

 

((1,0), (0,1)) ∈ ℛ as 1 ⋅ 1 − 0 ⋅ 0 = 1 − 0 = 1 ≥ 0. 

((0,1), (0, −1)) ∈ ℛ as 0(−1) − 1(0) = 0 − 0 ≥ 0. 
 

Yet ((1,0), (0, −1)) ∉ ℛ as 1(−1) − 0 ⋅ 0 = −1 − 0 = −1 < 0. 

 

In other words, sorting by the cross product is a bad idea. 

 

Grading: 1 pt reflexive, 3 pts for each of the others, for the ones that are 3 pts 1 pt for 

saying no, 2 pts for finding a counter-example 

 


