
Page 1 of 6

Computer Science Foundation Exam

 December 18, 2015

Section I B

COMPUTER SCIENCE

NO books, notes, or calculators may be used,

and you must work entirely on your own.

SOLUTION

Question # Max Pts Category Passing Score

1 10 ANL 7

2 10 ANL 7

3 10 DSN 7

4 10 DSN 7

5 10 ALG 7

TOTAL 50 35

You must do all 5 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat.

Fall 2015 Computer Science Exam, Part B

Page 2 of 6

1) (10pts) ANL (Algorithm Analysis)

Consider the recursive function sum shown below:

double sum(int* array, int low, int high){

 if (low == high)

 return array[low];

 int mid = (low+high)/2, left = 0, right = 0, i;

 for (i=low; i<=mid; i++) left += array[i];

 for (i=mid+1; i<=high; i++) right += array[i];

 if (left > right) return left + sum(array, low, mid);

 return right + sum(array, mid+1, high);

}

(a) (3 pts) Let T(n) represent the run time of the function call sum(array, 0, n-1), where array is

an integer array of size n. Write a recurrence relation that T(n) satisfies.

 𝑇(𝑛) = 𝑇 (
𝑛

2
) + 𝑂(𝑛), 𝑇(1) = 1

Grading: 2 pts T(n/2), 1 pt O(n).

(b) (7 pts) Using the iteration method, determine a closed-form solution (Big-Oh bound) for T(n).

Assume T(1) = O(1).

𝑇(𝑛) = 𝑇 (
𝑛

2
) + 𝑐𝑛

𝑇(𝑛) = 𝑇 (
𝑛

4
) +

𝑐𝑛

2
+ 𝑐𝑛

𝑇(𝑛) = 𝑇 (
𝑛

4
) +

3𝑐𝑛

2

𝑇(𝑛) = 𝑇 (
𝑛

8
) +

𝑐𝑛

4
+

3𝑐𝑛

2

𝑇(𝑛) = 𝑇 (
𝑛

8
) +

7𝑐𝑛

4

After k steps, we have

𝑇(𝑛) = 𝑇 (
𝑛

2𝑘
) +

(2𝑘 − 1)𝑐𝑛

2𝑘−1

Plugging in
𝑛

2𝑘 = 1, we have

𝑇(𝑛) = 𝑇(1) +
(𝑛 − 1)𝑐𝑛

𝑛
2

𝑇(𝑛) = 1 + 2𝑐(𝑛 − 1)

𝑇(𝑛) = 𝑂(𝑛)

Grading: 1 pt each iteration (3 pts total), 2 pts general form with k, 2 pts finishing problem. Note

in place of cn students can write O(n) or even n, with no penalty.

Fall 2015 Computer Science Exam, Part B

Page 3 of 6

2) (10 pts) ANL (Algorithm Analysis)

(a) (5 pts) A matrix factorization algorithm that is run on a input matrix of size n x n, runs in O(n3) time.

If the algorithm takes 54 seconds to run for an input of size 3000 x 3000, how long will it take to run on

an input of size 1000 x 1000?

Let T(n) be the run-time of the algorithm on a matrix input of size n x n. We have:

𝑇(3000) = 𝑐30003 = 54 𝑠𝑒𝑐

𝑐 =
54

27 × 109
𝑠𝑒𝑐 =

2

109
𝑠𝑒𝑐

We desire to find T(1000):

𝑇(1000) = 𝑐(10003) =
2 𝑠𝑒𝑐

109
× 109 = 2 𝑠𝑒𝑐

Grading: 2 pts solving for c, 2 pts plugging in c, 1 pt for simplifying to 2 sec. Ratio method is valid

as well, map points accordingly.

(b) (5 pts) A string algorithm with inputs of lengths n and m runs in O(n2m) time. If the algorithm takes

2 seconds to run on an input with n = 1000 and m = 500, how long will the algorithm take to execute on

an input with n = 250 and m = 1000?

Let T(n, m) be the run-time of the algorithm on strings inputs with lengths n and m. We have:

𝑇(1000, 500) = 𝑐(10002)(500) = 2 𝑠𝑒𝑐

𝑐 =
2 𝑠𝑒𝑐

5 × 108

We desire to find T(250, 1000):

𝑇(250, 1000) = 𝑐(2502)(1000) =
2 𝑠𝑒𝑐

5 × 108
× 625 × 105 =

250

1000
𝑠𝑒𝑐 = .25 𝑠𝑒𝑐

Grading: 2 pts solving for c, 3 pts obtaining final answer. Ratio method is valid as well, map points

accordingly.

Fall 2015 Computer Science Exam, Part B

Page 4 of 6

3) (10 pts) DSN (Linked Lists)

Write a recursive function, aboveThreshold, that takes in a pointer to the front of a linked list

storing integers, and an integer, limit, and returns the number of values stored in the linked list that

are strictly greater than limit. For example, if the function was called on a list storing 3, 8, 8, 6, 7, 5,

7, 9 and limit equaled 6, then the function should return 5, since the 2nd, 3rd, 5th, 7th and 8th values

in the list are strictly greater than 6. (Notice that we don't count the 4th element.)

Use the struct definition provided below.

typedef struct node {

 int value;

 struct node* next;

} node;

int aboveThreshold(node* front, int limit) {

 if (front == NULL) return 0;

 int cnt = 0;

 if (front->data > limit) cnt = 1;

 return cnt + aboveThreshold(front->next, limit);

}

Grading conceptually: 3 pts for the base case, 3 pts for adding 1 in the case that the first item is

greater than the limit, 3 pts for adding in the appropriate recursive call, 1 pt for returning. Max of

3 pts for an iterative solution.

Fall 2015 Computer Science Exam, Part B

Page 5 of 6

4) (10 pts) DSN (Binary Trees)

We define the offcenter value for each node in a binary tree as being the absolute value of the difference

between the height of its left subtree and the height of its right subtree. For example, for an AVL tree,

each node has an offcenter value of 0 or 1. Also, note that we define the offcenter value of a null node to

be 0. Write a function, maxOffCenterValue that computes the maximum offcenter value of any

node in a tree pointed to by root. To make your task easier, assume that the height of each node is stored

in the corresponding struct for that node in the component height.

Using the struct definition given below, complete the function in the space provided.

#include <math.h>

typedef struct treenode {

 int value;

 int height;

 struct treenode *left;

 struct treenode *right;

} treenode;

int max(int a, int b) {

 if (a > b) return a;

 return b;

}

int maxOffCenterValue(treenode* root) {

 if (root == NULL) return 0;

 if (root->left == NULL && root->right == NULL) return 0;

 if (root->left == NULL || root->right == NULL)

 return root->height;

 int lVal = maxOffCenterValue(root->left);

 int rVal = maxOffCenterValue(root->right);

 int res = max(lVal, rVal);

 int cur = abs(root->left->height - root->right->height);

 return max(res, cur);

}

Grading: 1 pt NULL case, 1 pt 1 node case, 2 pts root has one child, 1 pt for left rec call, 1 pt for

right rec call, 2 pts for current node calculation, 2 pts for getting max of all three.

Fall 2015 Computer Science Exam, Part B

Page 6 of 6

5) (10 pts) ALG (Sorting)

Write the code for any one of the following O(n2) sorts: Bubble Sort, Insertion Sort, Selection Sort in a

single function below. Your code should sort the array from smallest to largest. (Namely, after your

code finishes array[i] ≤ array[i+1] for all i, 0 ≤ i < length-1.) Please provide the name of the sort you are

choosing to implement and fill in the function prototype below.

void bubblesort(int* array, int length) {

 int i,j;

 for (i=length-1; i>0; i--) {

 for (j=0; j<i; j++) {

 if (array[j] > array[j+1]) {

 int temp = array[j];

 array[j] = array[j+1];

 array[j+1] = temp;

 }

 }

 }

}

void insertionsort(int* array, int length) {

 int i,j;

 for (i=1; i<length; i++) {

 j = i;

 while (j>0 && array[j] < array[j-1]) {

 int temp = array[j];

 array[j] = array[j-1];

 array[j-1] = temp;

 j--;

 }

 }

}

void selectionsort(int* array, int length) {

 int i,j;

 for (i=length-1; i>=0; i--) {

 int bestJ = 0;

 for (j=1; j<=i; j++) {

 if (array[j] > array[bestJ])

 bestJ = j;

 }

 int temp = array[i];

 array[i] = array[bestJ];

 array[bestJ] = temp;

 }

}

Grading: 3 pts outer loop structure, 4 pts inner loop structure, 3 pts appropriate swapping, 1 pt

off for sorting properly but using the wrong name for the sort or writing an extra function.

