
Page 1 of 6

Computer Science Foundation Exam

December 12, 2014

Section I B

COMPUTER SCIENCE

NO books, notes, or calculators may be used,

and you must work entirely on your own.

SOLUTION

Question # Max Pts Category Passing Score

1 10 ANL 7

2 10 ANL 7

3 10 DSN 7

4 10 DSN 7

5 10 ALG 7

TOTAL 50 35

You must do all 5 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat.

Fall 2014 Computer Science Exam, Part B

Page 2 of 6

1) (10pts) ANL (Algorithm Analysis)

Consider the following function shown below:

int countBitsOn(int n) {

 if (n == 0)

 return 0;

 return n%2 + countBitsOn(n/2);

}

(a) (3 pts) Let T(n) be the runtime of countBitsOn with an input of size n. Write a recurrence relation

that T(n) satisfies, assuming that a constant number of simple operations takes 1 unit of time.

𝑇(𝑛) = 𝑇 (
𝑛

2
) + 1

Grading: 1 pt for T(n/2), 1 pt for plus, 1 pt for 1

(b) (7 pts) Use the iteration technique to solve for T(n). To simplify the calculation, you may assume

that n = 2m for some non-negative integer m. Make sure to substitute back and express your final answer

in terms of n. Note: You may assume T(1) = 1.

𝑇(2𝑚) = 𝑇 (
2𝑚

2
) + 1

𝑇(2𝑚) = 𝑇(2𝑚−1) + 1

𝑇(2𝑚) = (𝑇 (
2𝑚−1

2
) + 1) + 1

𝑇(2𝑚) = 𝑇(2𝑚−2) + 2

𝑇(2𝑚) = (𝑇(
2𝑚−2

2
) + 1) + 2

𝑇(2𝑚) = 𝑇(2𝑚−3) + 3

We see that after k steps, we have 𝑇(2𝑚) = 𝑇(2𝑚−𝑘) + 𝑘. Substitute k = m to get:

𝑇(2𝑚) = 𝑇(2𝑚−𝑚) + 𝑚 = 𝑇(1) + 𝑚 = 𝑚 + 1

Finally, since n = 2m, it follows that m = log2n. Thus, 𝑇(𝑛) = 𝑙𝑜𝑔2𝑛 + 1 = 𝑂(lg 𝑛).

Grading: 1 pt for each of iteration, for 3 iterations, 2 pts for the general guess, 1 pt for plugging in

k = m, and 1 pt for the final answer (either exact or big-oh answer is accepted.)

Fall 2014 Computer Science Exam, Part B

Page 3 of 6

2) (10 pts) ANL (Algorithm Analysis)

(a) (5 pts) An algorithm for sorting student records runs in θ(nlgn) time. It takes 4 ms to sort 216 student

records. How much time will it take, approximately, in ms, to sort 220 student records?

Set up an equation for T(n), the run-time of this algorithm as follows:

𝑇(𝑛) = 𝑐𝑛𝑙𝑜𝑔2𝑛

for some constant c. Substitute in the first piece of information and solve for c:

𝑇(216) = 𝑐216𝑙𝑜𝑔2216 = 4𝑚𝑠

𝑐216(16) = 4𝑚𝑠

𝑐 =
4

220
𝑚𝑠

Note: we didn't simplify thsi fraction in the hopes that this form will be useful later. Now, solve for

T(220):

𝑇(220) = 𝑐220𝑙𝑜𝑔2220 =
4𝑚𝑠

220
× 220 × 20 = 80 𝑚𝑠

Grading: 1 pt for general form, 2 pts for solving for c, 2 pts for plugging in to get answer.

(b) (5 pts) An algorithm for finding the shortest distance between any pair of n locations runs in θ(n3)

time. For n = 125, the algorithm takes 100 ms. How long will it take, in seconds, approximately, to run

on an input with n = 500?

Set up an equation for T(n), the run-time of this algorithm as follows:

𝑇(𝑛) = 𝑐𝑛3

for some constant c. Substitute in the first piece of information and solve for c:

𝑇(125) = 𝑐1253 = 100𝑚𝑠

𝑐 =
100

1253
𝑚𝑠

Now, solve for T(500):

𝑇(500) = 𝑐5003 =
100𝑚𝑠

1253
× 5003 = (

500

125
)3 × 100 𝑚𝑠 = 43 × 100𝑚𝑠 = 6400𝑚𝑠 = 6.4𝑠𝑒𝑐

Grading: 1 pt for general form, 2 pts for solving for c, 1 pt for answer in ms, 1 pt to convert to

seconds.

Fall 2014 Computer Science Exam, Part B

Page 4 of 6

3) (10 pts) DSN (Linked Lists)

Write a function, insertFront, that inserts a value into the front of a circular linked list and returns

the front of the resulting linked list. Your code should have a single malloc in it for the new node it

creates and should make sure that the appropriate links between nodes are adjusted accordingly. Finally,

make sure your code works for inserting into an empty circular linked list. In the prototype shown

below, the first parameter is the pointer to the front of the current list and the second parameter is the

value to be inserted into the front of the list.

Use the struct definition provided below.

typedef struct node {

 int data;

 struct node* next;

} node;

node* insertFront(node* front, int value) {

 node* tmp = malloc(sizeof(node)); // 2 pts total

 tmp->data = value;

 tmp->next = front;

 if (front == NULL) { // 2 pts for this case

 tmp->next = tmp;

 return tmp;

 }

 node* iter = front; // 1 pt

 while (iter->next != front) // 2 pts

 iter = iter->next; // 1 pt

 iter->next = tmp; // 1 pt

 return tmp; // 1 pt

}

Note: there are many solutions, be very careful to trace through

alternate solution ideas and award points proportionally to the

subsections of the solution as indicated here.

Fall 2014 Computer Science Exam, Part B

Page 5 of 6

4) (10 pts) DSN (Binary Trees)

Consider the problem of finding the kth smallest item in a binary search tree storing unique values.

Write a recursive function with the prototype shown below to solve this problem. The first parameter to

the function will be a pointer to the root node of the binary tree and the second value will be the 1-based

rank of the item to be returned. (If k is 1, you should return the smallest item in the tree.) Note that the

number of nodes in the subtree at each node is stored inside the node. You may assume that the

value of k will be in between 1 and the value of numNodes in the struct pointed to by root.

typedef struct treenode {

 int data;

 int numNodes;

 struct treenode *left;

 struct treenode *right;

} treenode;

int kthSmallestValue(treenode* root, int k) {

 // 2 pts for this case.

 if (root->left == NULL && k == 1)

 return root->data;

 // 2 pts for this case.

 int leftCnt = root->left->numNodes;

 if (k - 1 == leftCnt)

 return root->data;

 // 3 pts for this case.

 if (k - 1 < leftCnt)

 return kthSmallestValue(root->left, k);

 // 3 pts for this case.

 return kthSmallestValue(root->right, k-leftCnt-1);

}

Fall 2014 Computer Science Exam, Part B

Page 6 of 6

5) (10 pts) ALG (Sorting)

(a) (4 pts) Consider running a merge sort on the array shown below. What would the contents of the

array be right before the very last merge finishes? (Note: There are a total of 7 calls to the merge

function when the array below gets merge sorted.)

Index 0 1 2 3 4 5 6 7

Value 17 13 27 9 18 15 2 8

State of Array Right Before the Last Merge:

Index 0 1 2 3 4 5 6 7

Value 9 13 17 27 2 8 15 18

Grading: 2 pts for left half, 2 pts for right half, no partial credit for either side, so only possible

scores are 0, 2 or 4.

(b) (6 pts) Which of the following recurrence relations best describes the worst case run time of Quick

Sort of n elements? (Circle the correct answer.) Explain why the solution to this recurrence corresponds

to the worst case run time of Quick Sort of n elements.

(a) 𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 𝑂(𝑛) (b) 𝑇(𝑛) = 𝑇 (

3𝑛

4
) + 𝑇 (

𝑛

4
) + 𝑂(𝑛)

 (c) 𝑇(𝑛) = 2𝑇(𝑛 − 1) + 𝑂(𝑛) (d) 𝑻(𝒏) = 𝑻(𝒏 − 𝟏) + 𝑶(𝒏)

In Quick Sort's worst case, the partition of n elements, splits the numbers into one set of size n - 1 and

another set of size 0. This partition itself takes O(n) time and then the remaining set of size n - 1 remains

to be sorted, which takes T(n - 1) time. The total time taken is the sum of the partition and the recursive

call on the array of size n - 1.

Grading: 2 pts answer, 2 pts to explain recursive call in worst case, 2 pts to explain where the O(n)

comes from.

